c-Rel drives pancreatic cancer metastasis through Fibronectin-Integrin signaling-induced isolation stress resistance and EMT activation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pancreatic ductal adenocarcinoma remains one of the deadliest malignancies, with limited treatment options and a high recurrence rate. Recurrence happens often with metastasis, for which cancer cells must adapt to isolation stress to successfully colonize distant organs. While the fibronectin-integrin axis has been implicated in this adaptation, its regulatory mechanisms require further elaboration. Here, we identify c-Rel as an oncogenic driver in PDAC, promoting epithelial-to-mesenchymal transition (EMT) plasticity, extracellular matrix (ECM) remodeling, and resistance to isolation stress. Mechanistically, c-Rel directly regulates fibronectin ( Fn1 ) and CD61 ( itgb3 ) transcription, enhancing cellular plasticity and survival under anchorage-independent conditions. Fibronectin is not essential for EMT, but its absence significantly impairs metastatic colonization, highlighting a tumor-autonomous role for FN1 in isolation stress adaptation. These findings establish c-Rel as a key regulator of PDAC metastasis by controlling circulating tumor cell (CTC) niche and survival, suggesting that targeting the c-Rel–fibronectin–integrin axis could provide new therapeutic strategies to mitigate disease progression and recurrence.

Article activity feed