Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Critical periods are developmental windows of high experience-dependent plasticity essential for the correct refinement of neuronal circuitry and function. While the consequences for the visual system of sensory deprivation during the critical period have been well-characterized, far less is known about the effects of enhanced sensory experience. Here, we use prey capture learning to assess structural and functional plasticity mediating visual learning in the primary visual cortex of critical period mice. We show that prey capture learning improves temporal frequency discrimination and drives a profound remodeling of visual circuitry through an increase in excitatory connectivity and spine turnover. This global and persistent rewiring is not observed in adult hunters and is mediated by TNFα-dependent mechanisms. Our findings demonstrate that enhanced visual experience in a naturalistic paradigm during the critical period can drive structural plasticity to improve visual function, and promotes a long-lasting increase in spine dynamics that could enhance subsequent plasticity.