ECD co-operates with ERBB2 to promote tumorigenesis through upregulation of unfolded protein response and glycolysis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ecdysoneless (ECD) mRNA and protein are overexpressed in breast cancer (BC), and its overexpression correlates with poor prognosis and short patient survival, particularly in ERBB2/HER2-positive BC. This study investigates the co-operative oncogenic mechanism of ECD and ERBB2 by deriving transgenic mice overexpressing ECD and/or ERBB2 (huHER2) in mammary epithelium under MMTV promoter, as well as human mammary immortal epithelial cell lines (hMECs) overexpressing ECD and/or ERBB2. While huHER2 Tg mice developed more homogenous solid nodular carcinomas, double transgenic mice ( ECD;huHER2 Tg) developed heterogenous and histologically aggressive mammary tumors with basal-like phenotype and epithelial mesenchymal transition (EMT) features, like ECD Tg tumors, resembling more to patient tumors. Importantly, transcriptomic profile of ECD;huHER2 Tg tumors revealed upregulation of two major oncogenic pathways, unfolded protein response (UPR) and glycolysis. Similarly, hMECs expressing both ECD and ERBB2 as compared to single gene expressing cells showed increase in oncogenic traits, and RNA-seq analysis showed a significant upregulation of glycolysis and UPR pathways. ECD is an RNA binding protein, and directly associates with three key glycolytic enzymes ( LDHA , PKM2 and HK2 ) and mRNA of a major UPR regulated gene GRP78, that results in increased mRNA stability. Lastly, we show an increase in glucose uptake and enhanced glycolytic rate in ECD+ERBB2-overexpressing cells as compared to ECD− or ERBB2-overexpressing hMECs. Taken together, our findings support a co-operative role of ECD and ERBB2 in oncogenesis by enhancing two major oncogenic pathways, UPR and glycolysis.

Significance

This study provides mechanistic insights that overexpression of ECD in ERBB2+ breast cancer patients correlates with shorter patient survival, by identifying direct ECD binding to mRNAs for UPR and glycolysis pathways.

Article activity feed