sciLaMA: A Single-Cell Representation Learning Framework to Leverage Prior Knowledge from Large Language Models

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Single-cell RNA sequencing (scRNA-seq) enables high-resolution exploration of cellular diversity and gene regulation, yet analyzing such data remains challenging due to technical and methodological limitations. Existing task-specific deep generative models like Variational Auto-Encoder (VAE) and its variants struggle to incorporate external biological knowledge, while transformer-based foundational large Language Models (LLMs or large LaMs) face limitations in computational cost and applicability to tabular gene expression data. Here, we introduce sciLaMA (single-cell interpretable Language Model Adapter), a novel representation learning framework that bridges these gaps by integrating static gene embeddings from multimodal LaMs with scRNA-seq tabular data through a paired-VAE architecture. Our approach generates context-aware representations for both cells and genes and outperforms state-of-the-art methods in key single-cell downstream tasks, including batch effect correction, cell clustering, and cell-state-specific gene marker and module identification, while maintaining computational efficiency. sciLaMA offers a computationally efficient, unified framework for comprehensive single-cell data analysis and biologically interpretable gene module discovery.

Article activity feed