Loss of tumor cell MHC Class II drives insensitivity of BRAF-mutant anaplastic thyroid cancers to MAPK inhibitors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cancer cells present neoantigens dominantly through MHC class I (MHCI) to drive tumor rejection through cytotoxic CD8+ T-cells. There is growing recognition that a subset of tumors express MHC class II (MHCII), causing recognition of antigens by TCRs of CD4+ T-cells that contribute to the anti-tumor response. We find that mouse Braf V600E -driven anaplastic thyroid cancers (ATC) respond markedly to the RAF + MEK inhibitors dabrafenib and trametinib (dab/tram) and that this is associated with upregulation of MhcII in cancer cells and increased CD4+ T-cell infiltration. A subset of recurrent tumors lose MhcII expression due to silencing of Ciita , the master transcriptional regulator of MhcII, despite preserved interferon gamma signal transduction, which can be rescued by EZH2 inhibition. Orthotopically-implanted Ciita -/- and H2-Ab1 -/- ATC cells into immune competent mice become unresponsive to the MAPK inhibitors. Moreover, depletion of CD4+, but not CD8+ T-cells, also abrogates response to dab/tram. These findings implicate MHCII-driven CD4+ T cell activation as a key determinant of the response of Braf-mutant ATCs to MAPK inhibition.

Article activity feed