A brainstem map of orofacial rhythms
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Rhythmic orofacial movements, such as eating, drinking, or vocalization, are controlled by distinct premotor oscillator networks in the brainstem. Orofacial movements must be coordinated with rhythmic breathing to avoid aspiration and because they share muscles. Understanding how brainstem circuits coordinate rhythmic motor programs requires neurophysiological measurements in behaving animals. We used Neuropixels probe recordings to map brainstem neural activity related to breathing, licking, and swallowing in mice drinking water. Breathing and licking rhythms were tightly coordinated and phase-locked, whereas intermittent swallowing paused breathing and licking. Multiple clusters of neurons, each recruited during different orofacial rhythms, delineated a lingual premotor network in the intermediate nucleus of the reticular formation (IRN). Local optogenetic perturbation experiments identified a region in the IRN where constant stimulation can drive sustained rhythmic licking, consistent with a central pattern generator for licking. Stimulation to artificially induce licking showed that coupled brainstem oscillators autonomously coordinated licking and breathing. The brainstem oscillators were further patterned by descending inputs at moments of licking initiation. Our results reveal the logic governing interactions of orofacial rhythms during behavior and outline their neural circuit dynamics, providing a model for dissecting multi-oscillator systems controlling rhythmic motor programs.