Self-Contemplating In-Context Learning Enhances T Cell Receptor Generation for Novel Epitopes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Computational design of T cell receptors (TCRs) that bind to epitopes holds the potential to revolutionize targeted immunotherapy. However, computational design of TCRs for novel epitopes is challenging due to the scarcity of training data, and the absence of known cognate TCRs for novel epitopes. In this study, we aim to generate high-quality cognate TCRs particularly for novel epitopes with no known cognate TCRs, a problem that remains under-explored in the field. We propose to incorporate in-context learning, successfully used with large language models to perform new generative tasks, to the task of TCR generation for novel epitopes. By providing cognate TCRs as additional context, we enhance the model’s ability to generate high-quality TCRs for novel epitopes. We first unlock the power of in-context learning by training a model to generate new TCRs based on both a target epitope and a small set of its cognate TCRs, so-called in-context training (ICT). We then self-generate its own TCR contexts based on a target epitope, as novel epitopes lack known binding TCRs, and use it as an inference prompt, referred to as self-contemplation prompting (SCP). Our experiments first demonstrate that aligning training and inference distribution by ICT is critical for effectively leveraging context TCRs. Subsequently, we show that providing context TCRs significantly improves TCR generation for novel epitopes. Furthermore, we show TCR generation using SCP-synthesized context TCRs achieves performance comparable to, and sometimes surpassing, ground-truth context TCRs, especially when combined with refined prompt selection based on binding affinity and authenticity metrics.

Article activity feed