ASTRO: Automated Spatial Whole-Transcriptome RNA-Expression Workflow
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Motivation
Despite significant advances in spatial transcriptomics, the analysis of formalin-fixed paraffin-embedded (FFPE) tissues, which constitute most clinically available samples, remains challenging. Additionally, capturing both coding and noncoding RNAs in a spatial context poses significant challenges. We recently introduced Patho-DBiT, a technology designed to address these unmet needs. However, the marked differences between Patho-DBiT and existing spatial transcriptomics protocols necessitate specialized computational tools for comprehensive whole-transcriptome analysis in FFPE samples.
Results
Here, we present ASTRO, an automated pipeline developed to process spatial transcriptomics data. In addition to supporting standard datasets, ASTRO is optimized for whole-transcriptome analyses of FFPE samples, enabling the detection of various RNA species, including non-coding RNAs such as miRNAs. To compensate for the reduced RNA quality in FFPE tissues, ASTRO incorporates a specialized filtering step and optimizes spatial barcode calling, increasing the mapping rate. These optimizations allow ASTRO to spatially quantify coding and non-coding RNA species in the entire transcriptome and achieve robust performance in FFPE samples.
Availability
Codes are available at GitHub ( https://github.com/gersteinlab/ASTRO ).