SpaIM: Single-cell Spatial Transcriptomics Imputation via Style Transfer
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Spatial transcriptomics (ST) technologies have revolutionized our understanding of cellular ecosystems. However, these technologies face challenges such as sparse gene signals and limited gene detection capacities, which hinder their ability to fully capture comprehensive spatial gene expression profiles. To address these limitations, we propose leveraging single-cell RNA sequencing (scRNA-seq), which provides comprehensive gene expression data but lacks spatial context, to enrich ST profiles. Herein, we introduce SpaIM, an innovative style transfer learning model that utilizes scRNA-seq information to predict unmeasured gene expressions in ST data, thereby improving gene coverage and expressions. SpaIM segregates scRNA-seq and ST data into data-agnostic contents and data-specific styles, with the contents capture the commonalities between the two data types, while the styles highlight their unique differences. By integrating the strengths of scRNA-seq and ST, SpaIM overcomes data sparsity and limited gene coverage issues, making significant advancements over 12 existing methods. This improvement is demonstrated across 53 diverse ST datasets, spanning sequencing- and imaging-based spatial technologies in various tissue types. Additionally, SpaIM enhances downstream analyses, including the detection of ligand-receptor interactions, spatial domain characterization, and identification of differentially expressed genes. Released as open-source software, SpaIM increases accessibility for spatial transcriptomics analysis. In summary, SpaIM represents a pioneering approach to enrich spatial transcriptomics using scRNA-seq data, enabling precise gene expression imputation and advancing the field of spatial transcriptomics research.