An Open-Source Joystick Platform for Investigating Forelimb Motor Control, Auditory-Motor Integration, and Value-Based Decision-Making in Head-Fixed Mice
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Investigation of neural processes underlying motor control requires behavioral readouts that capture the richness of actions, including both categorical (choice-based) information and motor execution (kinematics). We present an open-source platform for behavioral training of head-fixed mice that combines a stationary or retractable forelimb-based joystick, sound-presentation system, capacitive lick sensor, and water reward dispenser. The setup allows for the creation of multiple behavioral paradigms, two of which are highlighted here: a two-alternative forced-choice auditory-motor discrimination paradigm, and a two-armed bandit value-based decision-making task. In the auditory-motor paradigm, mice learn to report high or low frequency tones by pushing or pulling the joystick. In the value-based paradigm, mice learn to push or pull the joystick based on the history of rewarded trials. In addition to reporting categorical choices, this setup provides a rich dataset of motor parameters that reflect components of the underlying learning and decision processes in both of these tasks. These kinematic parameters (including joystick speed and displacement, Fréchet similarity of trajectories, tortuosity, angular standard deviation, and movement vigor) provide key additional insights into the motor execution of choices that are not as readily assessed in other paradigms. The system’s flexibility of task design, joystick readout, and ease of construction represent an advance compared to currently available manipulandum tasks in mice. We provide detailed schematics for constructing the setup and protocols for behavioral training using both paradigms, with the hope that this open-source resource is readily adopted by neuroscientists interested in mechanisms of sensorimotor integration, motor control, and choice behavior.
Significance Statement
Behavioral paradigms for experiments in head-restrained mice are important for investigating the relationship between neural activity and behavior. However, behavioral setups are often constrained by high cost, design complexity, and implementation challenges. Here, we present an open-source platform for behavioral training of head-fixed mice using a joystick manipulandum. The setup allows for the creation of multiple behavioral paradigms, including an auditory-motor discrimination paradigm, and a value-based decision-making task. We include detailed instructions for construction and implementation of the entire open-source behavioral platform.