Hypothalamic Vasopressin Neurons Enable Maternal Thermoregulatory Behaviors
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Newborns of many mammalian species are partial poikilotherms and require adult thermoregulatory care for survival. In mice, pup survival in cold and cool ambient temperature depends on the ability of adult caregivers to huddle pups and bring them into a high-quality nest. It is therefore essential that adult mice adjust parental care as a function of changes in ambient temperature. Here, we investigated how mouse maternal care adapts to a range of temperatures, from cold to warm. We show that changes in ambient temperature affect several individual and co-parenting maternal behaviors in both dams and virgin female mice, and modulate activity of vasopressin neurons. Furthermore, we establish that the effects of ambient temperature on both maternal care and the activity of vasopressin neurons depend in part on thermosensation, specifically on the TRPM8 sensor. Using trans-synaptic anterograde tracing and whole-brain activity mapping, we find that vasopressin neurons from the paraventricular hypothalamic nucleus connect synaptically with temperature-responsive brain structures implicated in maternal care. We then show that optogenetic activation of vasopressin projections to the central amygdala, a structure activated by cold ambient temperature, recapitulates the effects of cold on co-parenting behaviors. Our data provide a biological mechanism for maternal thermoregulatory behavior in mice with translational relevance to the reported association between ecosystem temperature fluctuations and variations in human child neglect cases.