Bayesian data driven modelling of kinetochore dynamics: space-time organisation of the human metaphase plate

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mitosis is a complex self-organising process that achieves high fidelity separation of duplicated chromosomes into two daughter cells through capture and alignment of chromosomes to the spindle mid-plane. Chromosome movements are driven by kinetochores, multi-protein machines that attach chromosomes to microtubules (MTs), both controlling and generating directional forces. Using lattice light sheet microscopy imaging and automated near-complete tracking of kinetochores at fine spatio-temporal resolution, we produce a detailed atlas of kinetochore metaphase-anaphase dynamics in untransformed human cells (RPE1). We fitted 18 biophysical models of kinetochore metaphase-anaphase dynamics to experimental data using Bayesian inference, and determined support for the models with model selection methods, demonstrating substantial sister force asymmetry and time dependence of the mechanical parameters. Our analysis shows that K-fiber pulling and pushing strengths are inversely correlated and that there is substantial spatial organisation of KT dynamic properties both within, and transverse to the metaphase plate. Further, K-fiber forces are tuned over the last 5 mins of metaphase towards a set point, which we refer to as the anaphase ready state.

Article activity feed