Hypoxia-inducible factor 1 protects neurons from Sarm1-mediated neurodegeneration

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Sarm1 NAD + hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O 2 -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression. We observed neuroprotection after depletion of VHL or other factors required for HIF-1 degradation, and expression of a non-ubiquitinated HIF-1 variant led to even stronger blockade of axon degeneration in mammals and Drosophila . Neuroprotection required HIF-1 DNA binding, prolonged expression, and resulted in broad gene expression changes. Unexpectedly, stabilized HIF-1 prevented the precipitous NAD + loss driven by Sarm1 activation in neurons, despite NAD + hydrolase activity being intrinsic to the Sarm1 TIR domain. Our work argues hypoxia inhibits Sarm1 activity through HIF-1 driven transcriptional changes, rendering neurons less sensitive to Sarm1-mediated neurodegeneration when in a hypoxic state.

Competing interests

Marc Freeman is co-founder of Nura Bio, a biotech startup pursuing novel neuroprotective therapies including SARM1 inhibition. The remaining authors declare no competing interests.

Article activity feed