The medial prefrontal cortex encodes procedural rules as sequential neuronal activity dynamics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The prefrontal cortex plays a crucial role in procedural rule learning; however, the specific neuronal mechanism through which it represents rules is unknown. We hypothesized that sequential neuronal activities in the prefrontal cortex encode these rules. To investigate this, we recorded neuronal activities in the medial prefrontal cortex of mice during rule learning using Ca 2+ imaging. We utilized a method based on convolutional negative matrix factorization, iSeq, to automatically detect temporal neuronal sequences in the recorded data. As rule learning advanced, these neuronal sequences began to encode critical information for rule execution. In mice that had mastered the rule, the dynamics of neuronal sequences could predict success and failure of reward acquisition. Furthermore, the composition of cell populations within the neuronal sequences was rearranged throughout the learning process. These findings suggest that as animals learn a rule, the medial prefrontal cortex continually updates its neuronal sequences to assign significance to behavioral actions crucial for reward acquisition.

Article activity feed