EPSD 2.0: An Updated Database of Protein Phosphorylation Sites across Eukaryotic Species

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

As one of the most crucial post-translational modifications (PTMs), protein phosphorylation regulates a broad range of biological processes in eukaryotes. Biocuration, integration and annotation of reported phosphorylation events will deliver a valuable resource for the community. Here, we present an updated database, the eukaryotic phosphorylation site database 2.0 (EPSD 2.0), which includes 2,769,163 experimentally identified phosphorylation sites (p-sites) in 362,707 phosphoproteins from 223 eukaryotes. From the literature, 873,718 new p-sites identified through high-throughput phosphoproteomic research were first collected, and 1,078,888 original phosphopeptides together with primary references were reserved. Then, this dataset was merged into EPSD 1.0, comprising 1,616,804 p-sites within 209,326 proteins across 68 eukaryotic organisms [1]. We also integrated 362,190 additional known p-sites from 10 public databases. After redundancy clearance, we manually re-checked each p-site and annotated 88,074 functional events for 32,762 p-sites, covering 58 types of downstream effects on phosphoproteins, and regulatory impacts on 107 biological processes. In addition, phosphoproteins and p-sites in 8 model organisms were meticulously annotated utilizing information supplied by 100 external platforms encompassing 15 areas. These areas included kinase/phosphatase, transcription regulators, three-dimensional structures, physicochemical characteristics, genomic variations, functional descriptions, protein domains, molecular interactions, drug-target associations, disease-related data, orthologs, transcript expression levels, proteomics, subcellular localization, and regulatory pathways. We expect that EPSD 2.0 will become a useful database supporting comprehensive studies on phosphorylation in eukaryotes. The EPSD 2.0 database is freely accessible online at https://epsd.biocuckoo.cn/ .

Article activity feed