An approach to produce thousands of single-chain antibody variants on a SPR biosensor chip for measuring target binding kinetics and for deep characterization of antibody paratopes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the “design” and “test” phases of antibody-based drugs (e.g., monoclonal antibodies, bispecifics, CAR-T therapies, ADCs) and biologics during early preclinical development, with the goal of identifying lead molecules with a higher likelihood of clinical success. Artificial intelligence (AI) is becoming an indispensable tool in this domain, both for improving molecules identified through traditional approaches and for the de novo design of novel therapeutics. However, critical bottlenecks persist in the “build” and “test” phases of AI-designed antibodies and protein binders, impeding early preclinical evaluation. While AI models can rapidly generate thousands to millions of putative drug designs, technological and cost limitations mean that only a few dozen candidates are typically produced and tested. Drug developers often face a tradeoff between ultra-high-throughput wet lab methods that provide binary yes/no binding data and biophysical methods that offer detailed characterization of a limited number of drug-target pairs. To address these bottlenecks, we previously reported the development of the Sensor-integrated Proteome On Chip (SPOC®) platform, which enables the production and capture-purification of 1,000 – 2,400 folded proteins directly onto a surface plasmon resonance (SPR) biosensor chip for measuring kinetic binding rates with picomolar affinity resolution. In this study, we extend the SPOC technology to the expression of single-chain antibodies (sc-antibodies), specifically scFv and VHH constructs. We demonstrate that these constructs are capture-purified at high levels on SPR biosensors and retain functionality as shown by the binding specificity to their respective target antigens, with affinities comparable to those reported in the literature. SPOC outputs comprehensive kinetic data including quantitative binding (R max ), on-rate ( k a ), off-rate ( k d ), affinity ( K D ), and half-life ( t 1/2 ), for each of thousands of on-chip sc-antibodies. Additionally, we present a case study showcasing single amino acid mutational scan of the complementarity-determining regions (CDRs) of a HER2 VHH (nanobody) paratope. Using 92 unique mutated variants from four different amino acid substitutions, we pinpoint critical residues within the paratope that could further enhance binding affinity. This study serves as a demonstration of a novel high-throughput approach for biophysical screening of hundreds to thousands of single chain antibody sequences in a single assay, generating high affinity resolution kinetic data to support antibody discovery and AI-enabled pipelines.

Article activity feed