Association between theta-band resting-state functional connectivity and declarative memory abilities in children
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Declarative memory formation critically relies on the synchronization of brain oscillations in the theta (4–8 Hz) frequency band within specific brain networks. The development of this capacity is closely linked to the functional organization of these networks already at rest. However, the relationship between theta-band resting-state functional connectivity and declarative memory abilities remains unexplored in children. Here, using magnetoencephalography, we examined the association between declarative memory performance and pre-learning resting-state functional connectivity across frequency bands in 32 school-aged children. Declarative memory was assessed as the percentage of correct retrieval of 50 new associations between non-objects and magical functions, while resting-state functional connectivity was measured through power envelope correlation of the theta, alpha, low and high beta frequency bands. We found that stronger theta-band resting-state functional connectivity within occipito-temporo-frontal networks correlated with better declarative memory retrieval, while no correlation was observed in the alpha and beta frequency bands. These findings suggest that the functional brain architecture at rest, specifically involving theta-band oscillations, supports declarative memory in children. This mechanism may facilitate the subsequent rapid transformation of sensory input into visuo-semantic representations, highlighting the critical role of theta-band connectivity in early cognitive development.