Extending empirical dynamic modeling to cross-sectional data beyond traditional time series

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The foundation of Empirical dynamic modeling (EDM) is in representing time-series data as the trajectory of a dynamic system in a multidimensional state space rather than as a collection of traces of individual variables changing through time. Takens’s theorem provides a rigorous basis for adopting this state-space view of time-series data even from just a single time series, but there is considerable additional value to building out a state space with explicit covariates. Multivariate EDM case studies to-date, however, generally rely on building up understanding first from univariate to multivariate and use lag-coordinate embeddings for critical steps along the path of analysis. Here, we propose an alternative set of steps for multivariate EDM analysis when the traditional roadmap is not practicable. The general approach borrows ideas of random data projection from compressed sensing, but additional justification is described within the framework of Takens’s theorem. We then detail algorithms that implement this alternative method and validate through application to simulated model data. The model demonstrations are constructed to explicitly demonstrate the possibility for this approach to extend EDM application from time-series trajectories to effectively realizations of the underlying vector field, i.e. data sets that measure change over time with very short formal time series but are otherwise “big” in terms of number of variables and samples.

Article activity feed