Markers of mitochondrial function and oxidative metabolism in female skeletal muscle do not display intrinsic circadian regulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19. Our findings demonstrate that markers of mitochondrial function and oxidative metabolism do not display intrinsic time-of-day regulation at the gene, protein, enzymatic, or functional level. The core-clock genes Bmal1 and Dbp exhibited intrinsic circadian rhythmicity in skeletal muscle (i.e., EDL, soleus, gastrocnemius) and circadian amplitude varied by muscle type. These findings demonstrate that female mouse skeletal muscle does not display circadian regulation of markers of mitochondrial function or oxidative metabolism over 24 hours.

Article activity feed