From dimer to tetramer: the evolutionary trajectory of C4 photosynthetic-NADP-ME oligomeric state in Poaceae
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The C4 carbon concentrating mechanism relies on specialized enzymes that have evolved unique expression patterns and biochemical properties distinct to their ancestral housekeeping forms. In maize and sorghum, the evolution of C4-NADP-malic enzyme (C4-NADP-ME) involved gene duplication and neofunctionalization, leading to the emergence of two plastidic isoforms: C4-NADP-ME and nonC4-NADP-ME, each with distinct kinetic and structural features. While C4-NADP-ME functions primarily as a tetramer, nonC4-NADP-ME exists in an equilibrium between dimeric and tetrameric forms, favoring the dimer in solution. This study shows which evolutionary changes in amino acid sequences influence the structure and function of these isoforms. By integrating X-ray crystallography, cryo-electron microscopy, computational molecular modeling and targeted biochemical analysis of mutant and truncated protein variants, we identify crucial roles for the N- and C-terminal regions and specific amino acid residues in governing isoform oligomerization. Our results reveal that the N-terminal region is essential for stabilizing the dimeric form of nonC4-NADP-ME, whereas specific adaptive substitutions and interactions with the C-terminal region enhance the stability of the tetrameric state characteristic of the C4-adapted isoform. We propose that differences in the N-terminal domain between the C4 and nonC4 isoforms reflect distinct selective pressures, which have driven their evolutionary divergence to fulfill specialized cellular functions.