Linking neural population formatting to function

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6). If everything is everywhere, why have distinct areas? Here we show that the function of a brain area is more related to how different types of information are combined (formatted) in neural representations than merely whether that information is present. We compared two brain areas: the middle temporal area (MT), which is important for visual motion perception (7, 8), and the dorsolateral prefrontal cortex (dlPFC), which is linked to decision-making and reward expectation (9,10)). When monkeys based decisions on a combination of motion and reward information, both types of information were present in both areas. However, they were formatted differently: in MT, they were encoded separably, while in dlPFC, they were represented jointly in ways that reflected the monkeys' decision-making. A recurrent neural network (RNN) model that mirrored the information formatting in MT and dlPFC predicted that manipulating activity in these areas would differently affect decision-making. Consistent with model predictions, electrically stimulating MT biased choices midway between the visual motion stimulus and the preferred direction of the stimulated units (11), while stimulating dlPFC produced 'winner-take-all' decisions that sometimes reflected the visual motion stimulus and sometimes reflected the preference of the stimulated units, but never in between. These results are consistent with the tantalizing possibility that a modular structure enables complex behavior by flexibly reformatting information to accomplish behavioral goals.

Article activity feed