The microtubule-severing enzyme spastin regulates spindle dynamics to promote chromosome segregation in Trypanosoma brucei
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite Trypanosoma brucei , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of T. brucei . We demonstrate that spastin catalyzes microtubule severing in vitro and ectopic overexpression of spastin disrupts spindle microtubules in vivo in trypanosome cells, leading to defective chromosome segregation. Knockdown of spastin impairs spindle integrity and disrupts chromosome alignment in metaphase and chromosome segregation in anaphase. We further show that the function of spastin requires the catalytic AAA-ATPase domain, the microtubule-binding domain, and the microtubule interacting and trafficking domain, and that the association of spastin with spindle depends on the microtubule-binding domain. Together, these results uncover an essential role for spastin in chromosome segregation by regulating spindle dynamics in this unicellular eukaryote.