AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Inflammation induced oligodendrocyte death and CNS demyelination, are key features of multiple sclerosis (MS). Inflammation-triggered endoplasmic reticulum (ER) stress and oxidative stress promote tissue damage in MS and in its preclinical animal model, experimental autoimmune encephalitis (EAE). Compound AA147 is a potent activator of the ATF6 signaling arm of the unfolded protein response (UPR) that can also induce antioxidant signaling through activation of the NRF2 pathway in neuronal cells. Previous work showed that AA147 protects multiple tissues against ischemia/reperfusion damage through ATF6 and/or NRF2 activation; however, its therapeutic potential in neuroinflammatory disorders remains unexplored. Here, we demonstrate that AA147 ameliorated the clinical symptoms of EAE and reduced ER stress, oligodendrocyte loss, and demyelination. Additionally, AA147 suppressed T cells in the CNS without altering the peripheral immune response. Importantly, AA147 significantly increased the expressions of Grp78 , an ATF6 target gene, in oligodendrocytes, while enhancing levels of Grp78 as well as Ho-1 , an NRF2 target gene, in microglia. In cultured oligodendrocytes, AA147 promoted nuclear translocation of ATF6, but not NRF2. Intriguingly, AA147 altered the microglia activation profile, possibly by triggering the NRF2 pathway. AA147 was not therapeutically beneficial during the acute EAE stage in mice lacking ATF6 in oligodendrocytes, indicating that protection primarily involves ATF6 activation in these cells. Overall, our results suggest AA147 as a potential therapeutic opportunity for MS by promoting oligodendrocyte survival and regulating microglia status through distinct mechanisms.