Functional expression and sex dimorphism of the T-type Cav3.2 Calcium Channel in human DRG Neurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

T-type/Cav3 calcium channels are key in neuronal excitability and pain processing with Cav3.2 being the prominent isoform in primary sensory neurons of the dorsal root ganglion (DRG). Its pharmacological inhibition or gene silencing induces analgesia in several preclinical models of inflammatory and neuropathic pain. However, the presence of Cav3.2, encoded by the CACNA1H gene, in human DRG neurons remains unresolved. Using RNA in-situ hybridization and electrophysiological recordings, we show that human DRGs express Cav3.2 in a subset of neurons positive for the neurotrophic factor receptor TrkB ( NTRK2 gene). The Cav3.2 current exhibits typical biophysical and pharmacological properties, including inhibition by a low concentration of nickel and by Z944, a specific T-type calcium channel blocker in advanced clinical development. Conversely, ABT-639, a T-type calcium channel inhibitor that failed in Phase 2 trials for pain relief, does not inhibit Cav3.2 currents in human DRG neurons. Importantly, Cav3.2 currents are prominent in neurons from female organ donors, supporting the presence of sex differences in pain mechanisms in humans. These findings underscore the potential of continued exploration of Cav3.2 as a therapeutic target for pain treatment and highlight a specific subset of human neurons that likely rely on this channel to modulate their excitability.

Article activity feed