Utilizing full-length 16S rRNA sequencing to assess the impact of diet formulation and age on targeted gut microbiome colonization in laboratory and mass-reared Mediterranean fruit flies
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Insect gut microbiomes have important roles in overall host health and how hosts function in the environment. In laboratory and mass-reared insects, gut microbiomes can differ in composition and function compared to wild conspecifics. For fruit flies, like the Mediterranean fruit fly (medfly; Ceratitis capitata ), these changes can influence male performance and behavior.
Overall, understanding factors that influence the ability of bacteria to colonize hosts is an important for the establishment of lost or novel microbiota into mass-reared insects. The goal of this study was to evaluate how host age and diet inoculation method influenced bacterial establishment in laboratory and mass-reared medfly. We used an Enterobacter strain with antibiotic resistance and coupled it with full-length PacBio 16S rRNA sequencing to track the establishment of a specific isolates under different adult dietary conditions. We also used two longstanding reared lines of medfly in our study. Our results identified that diet had a strong interaction with age. Host medfly fed a liquid diet with the target bacteria were able to be colonized regardless of age, but those fed a slurry-based diet and separate water source were more resilient. This was consistent for both fly rearing lines used in the study. 16S rRNA sequencing corroborated the establishment of the specific strain, but also revealed some species/strain-level variation of Enterobacter sequences associated with the flies. Additionally, our study illustrates that long-read 16S rRNA sequencing may afford improved characterization of species- and strain-level distribution of Enterobacteriaceae in insects.
Importance:
Insects form intimate relationships with gut microorganisms that can help facilitate several important roles. The goals of our study were to evaluate factors that influence microbial establishment in lines of the Mediterranean fruit fly (medfly), an important pest species throughout the world. Mass-reared insects for sterile insect technique often possess gut microbiomes that substantially differ from wild flies, which can impact their performance in pest control contexts. Here, we show that liquid-based formulations can be utilized to manipulate the gut microbiota of mass-reared medfly. Furthermore, using near full-length 16S rRNA metabarcoding sequencing, we uncovered strain-level diversity of that was not immediately obvious using other approaches. This is a notable finding, as it suggests that full-length 16S rRNA approaches can have marked improvements for some taxa compared to fewer hypervariable regions at approximately the same cost. Our results provide new avenues for exploring and interrogating medfly-microbiome interactions.