Integration of Transplanted Interneurons Over a New Period of Ocular Dominance Plasticity in Adult Visual Cortex

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cortical interneurons play an important role in mediating the juvenile critical period for ocular dominance plasticity in the mouse primary visual cortex. Previously, we showed that transplantation of cortical interneurons derived from the medial ganglionic eminence (MGE) opens a robust period of ocular dominance plasticity 33-35 days after transplantation into neonatal host visual cortex. The plasticity can be induced by transplanting either PV or SST MGE-derived cortical interneurons; it requires transplanted interneurons to express the vesicular GABAergic transporter; and it is manifested by changes to the host visual circuit. Here, we show that transplantation of MGE-derived cortical interneurons into the adult host visual cortex also opens a period of ocular dominance plasticity. The transplanted interneurons must be active to induce plasticity, and the neuronal activity and tuning of visually evoked responses in transplanted and host PV and SST interneurons are modulated by the locomotor state of the host. We also show that changes in activity over the period of plasticity induction are different between PV and SST interneurons but similar between host and transplanted interneurons of each type. The present findings demonstrate that the transplant-induced plasticity generated in adult visual cortex has many features in common with the role of these interneurons during the normal, juvenile critical period.

Article activity feed