IL-1β-driven NF-κB transcription of ACE2 as a Mechanism of Macrophage Infection by SARS-CoV-2
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection. We developed a humanized ACE2 ( hACE2 ) mouse whereby hACE2 cDNA was cloned into the mouse ACE2 locus under control of the native promoter. We validated susceptibility of hACE2 mice to SARS-CoV-2 infection relative to wild-type mice and an established K18-hACE2 model of acute fulminating disease. Intranasal exposure to SARS-CoV-2 led to pulmonary consolidations with cellular infiltrate, edema, and hemorrhage, consistent with pneumonia, yet unlike the K18-hACE2 model, hACE2 mice survived and maintained stable weight. Infected hACE2 mice also exhibited a unique plasma chemokine, cytokine, and growth factor inflammatory signature relative to K18-hACE2 mice. Infected hACE2 mice demonstrated evidence of viral replication in infiltrating lung macrophages, and infection of macrophages in vitro revealed a transcriptional profile indicative of altered RNA and ribosomal processing machinery as well as activated cellular antiviral defense. Macrophage IL-1β-driven NF-κB transcription of ACE2 was an important mechanism of dynamic ACE2 upregulation, promoting macrophage susceptibility to infection. Experimental models of COVID-19 that make use of native hACE2 expression will allow for mechanistic insight into factors that can either promote host resilience or increase susceptibility to worsening severity of infection.