Dynamic Grouping of Ongoing Activity in V1 Hypercolumns

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neurons’ spontaneous activity provides rich information about the brain. A single neuron’s activity has close relationships with the local network. In order to understand such relationships, we studied the spontaneous activity of thousands of neurons in macaque V1 and V2 with two-photon calcium imaging. In V1, the ongoing activity was dominated by global fluctuations in which the activity of majority of neurons were correlated. Neurons’ activity also relied on their relative locations within the local functional architectures, including ocular dominance, orientation, and color maps. Neurons with similar preferences dynamically grouped into co-activating ensembles and exhibited spatial patterns resembling the local functional maps. Different ensembles had different strengths and frequencies. This observation was consistent across all hypercolumn-sized V1 locations we examined. In V2, different imaging sites had different orientation and color features. However, the spontaneous activity in the sampled regions also correlated with the underlying functional architectures. These results indicate that functional architectures play an essential role in influencing neurons’ spontaneous activity, and can be explained by a network model that integrates diverse horizontal connections among similar functional domains.

Article activity feed