Verkko2: Integrating proximity ligation data with long-read De Bruijn graphs for efficient telomere-to-telomere genome assembly, phasing, and scaffolding

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Telomere-to-Telomere Consortium recently finished the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on the semi-manual combination of long, accurate PacBio HiFi and ultra-long Oxford Nanopore sequencing reads. The Verkko assembler later automated this process, achieving complete assemblies for approximately half of the chromosomes in a diploid human genome. However, the first version of Verkko was computationally expensive and could not resolve all regions of a typical human genome. Here we present Verkko2, which implements a more efficient read correction algorithm, improves repeat resolution and gap closing, introduces proximity-ligation-based haplotype phasing and scaffolding, and adds support for multiple long-read data types. These enhancements allow Verkko to assemble all regions of a diploid human genome, including the short arms of the acrocentric chromosomes and both sex chromosomes. Together, these changes increase the number of telomere-to-telomere scaffolds by twofold, reduce runtime by fourfold, and improve assembly correctness. On a panel of 19 human genomes, Verkko2 assembles an average of 39 of 46 complete chromosomes as scaffolds, with 21 of these assembled as gapless contigs. Together, these improvements enable telomere-to-telomere comparative and pangenomics, at scale.

Article activity feed