Genomic signals of local adaptation in Eleginops maclovinus from Northern Chilean Patagonia
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Understanding the evolutionary mechanisms that shape the adaptive divergence across spatially heterogeneous environments is a challenging task for evolutionary ecologists. The Chilean marine Patagonia is a complex ecosystem with diverse geomorphology and physical-chemical oceanographic conditions. There is limited research evaluating the interactions between selective forces and environmental conditions in this area. This study focuses on identifying the genomic signals of local adaptation of the endemic marine fish, Eleginops maclovinus from Chilean North Patagonia. To achieve this goal, we used an environmental marine database (temperature, salinity, oxygen, phosphate nitrate and silicate concentration) with collected from 1995 to 2018 and 11,961 SNPs obtained from 246 individuals from 10 sampling locations across this area. We identified putative adaptive loci using ten bioinformatic software tools, where five were based on population genetic differentiation (PGD) and five based on the genotype-environment association (GEA). We identified 392 adaptative loci using PGD and 2,164 associated with at least one of the six environmental variables analyzed using GEA. A total of 131 loci were shared between the PGD and GEA approaches, of which 37 were associated with genes involved in the growth, metabolism and homeostasis. Then, we evaluated the variation of adaptive loci with environmental variables using polygenic scores and found significant correlations with temperature, salinity, and oxygen, indicating polygenic selection along environmental gradients. This study highlights how polygenic selection drives local adaptation in Eleginops maclovinus and underscores the value of integrating genomic and environmental data for conservation in the Patagonian ecosystem.