Contributions of temporal and spatial masking signals in perception of sequential visual events

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Accurate perception of time and space is essential for moment-to-moment interactions with our surroundings. This process requires flexibility, as it integrates information from our actions and the external context. Probing the visual system during the updating process reveals spatiotemporal distortions, where sequential stimuli appear closer in time and space than they are. These effects occur perisaccadically or when a visual mask follows the stimuli. The study investigated whether non-overlapping visual masks could influence temporal inversion judgments (TOJs), suggesting that a temporal signal might act as an anchor during updating. In Experiment 1, participants judged the temporal order of two stimuli under three conditions: no mask, a full-field mask, or a partial mask avoiding stimuli’s locations. Compared to no mask, both masks triggered TOJs when presented within 30 milliseconds of the second stimulus. In a control experiment, delaying mask onset by 30 milliseconds eliminated the inversion effect. In Experiment 2, TOJs were observed for both ipsilateral and contralateral masks, suggesting that long range inhibitory signals might also contribute to the effect. Together, these findings indicate that temporal inversions can occur with non-overlapping stimuli masks configuration, pointing to a non-spatial signal related to mask timing as the underlying mechanism.

Article activity feed