Recurrent cancer-associated ERBB4 mutations are transforming and confer resistance to targeted therapies
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (Review Commons)
Abstract
Receptor tyrosine kinase ERBB4 (HER4) is frequently mutated in human cancer, and ERBB4 mutations have been identified in patients relapsing on targeted therapy. Here, we addressed the functional consequences of recurrent cancer-associated ERBB4 mutations that are located at regions important for dimer interactions and/or are paralogous to known oncogenic hotspot mutations in other ERBB genes. Eleven out of 18 analyzed mutations were transforming in cell models, thus suggesting oncogenic potential for more than half of the recurrent ERBB4 mutations. More detailed analyses of the most potent mutations, S303F, E452K and L798R, showed that they are activating, can co-operate with other ERBB receptors and are targetable with clinically available second-generation pan-ERBB inhibitors neratinib, afatinib and dacomitinib. Furthermore, the S303F mutation, together with a previously identified activating ERBB4 mutation, E715K, promoted resistance to third-generation EGFR inhibitor osimertinib in EGFR-mutant lung cancer model in vitro and in vivo . Together, these results are expected to facilitate clinical interpretation of the most recurrent cancer-associated ERBB4 mutations. The findings provide rationale for testing the efficacy of clinically used pan-ERBB inhibitors in patients harboring driver ERBB4 mutations both in the treatment-naïve setting, and upon development of resistance to targeted agents.
Article activity feed
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements [optional]
The authors wish to thank the reviewers for fair and constructive comments and Review Commons for facilitating the process.
2. Point-by-point description of the revisions
Point-by-point replies to reviewers' comments on the original submitted manuscript are below. Authors' responses are in plain font.
Reviewers' comments:
Reviewer #1
(Evidence, reproducibility and clarity (Required)):
Summary: The authors identify cancer-associated ERBB4 mutations that are selected for functional characterization. Utilizing the BaF3 and MCF10A models, the authors investigate the potential oncogenic role for 11 recurrent ERBB4 …
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements [optional]
The authors wish to thank the reviewers for fair and constructive comments and Review Commons for facilitating the process.
2. Point-by-point description of the revisions
Point-by-point replies to reviewers' comments on the original submitted manuscript are below. Authors' responses are in plain font.
Reviewers' comments:
Reviewer #1
(Evidence, reproducibility and clarity (Required)):
Summary: The authors identify cancer-associated ERBB4 mutations that are selected for functional characterization. Utilizing the BaF3 and MCF10A models, the authors investigate the potential oncogenic role for 11 recurrent ERBB4 mutations. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1. The authors perform modeling to decipher potential mechanisms of action of the ERBB4 S303F, E452K and L798R mutations. The authors assess the ability of HER3 mutations to dimerize with other HER family members and demonstrate that ERBB4 S303F can mediate its activating functions by stabilizing homo- and heterodimers with other ERBB receptors and that the heterodimerization is likely cell/tissue context dependent. The authors demonstrate that transforming ERBB4 mutants are sensitive to pan-ERBB inhibitors and drive resistance to EGFR-targeted therapy in EGFR-mutant NSCLC cells.
Major comments:
Patient data analysis is performed in more than 15 months ago in January 2024. This analysis should be updated.
We thank the reviewer for pointing out the aspect of constantly expanding mutation data in clinical cancer sample databases. We reanalyzed the patient data in cBioPortal (data download 02 May 2025). In this new analysis, the distribution of mutations in ERBB4 did not change (Reviewer only Fig. 1A), and the 18 selected mutations were still the most recurrently mutated ERBB4 mutations (Reviewer only Fig. 1B). Reanalysis of updated patient data did not change the initial rationale of the study, or the conclusions in the submitted manuscript.
Reviewer only Figure 1. Comparison of patient data derived from cBioPortal on January 2024 (01/2024) or May 2025 (05/2025). A) Figure 1B of the original submitted manuscript. B) Supplementary Figure S1C of the original submitted manuscript.
The rationale for selecting the mutations to be studied is not entirely clear. There are no references to support studying mutations in Fig 1B red boxes.
We apologize for not being sufficiently clear on our rationale for selecting the mutations for analysis. The spectrum of mutations across the ERBB4 gene do not demonstrate clear hotspots as seen in for example EGFR, KRAS, or BRAF. However, we observed that there are regions (not necessarily individual amino acid changes) in ERBB4 that seem to accumulate more mutations than other regions. Looking more closely, we observed that these "hot regions" tend to be located in areas where activating mutations have been described for other oncogenic ERBB family members and/or target structurally important regions for receptor activation such as dimerization interfaces. We hypothesized that these characteristics would suggest functional relevance for the mutations in these "hot regions". In the revised manuscript (on page 11), we have revised the text describing the selection of mutations for further analysis, and added references to justify our selection:
"While the missense mutations were distributed across the 1,308 amino acid sequence of ERBB4, lacking obvious hotspot mutations such as observed for example in EGFR or KRAS, clusters of recurrent mutations could be identified (Fig. 1B). These clusters tended to be located in specific regions that are targeted by activating mutations in other oncogenic ERBB family members (Greulich et al., 2005, 2012; Lee et al., 2006; Bose et al., 2013; Jaiswal et al., 2013)and/or are important for receptor activation (Ferguson et al., 2003; Bouyain et al., 2005; Liu et al., 2012), suggesting functional relevance (red boxes in Fig. 1B). Some recurrent mutations were located in the unstructured C-terminal tail of ERBB4 (Fig. 1B). We selected in total 18 ERBB4 missense mutations (indicated in Fig. 1B) that were recurrent and/or located in the abovementioned regions of interest for functional characterization (indicated in Fig. 1B and Supplementary Fig. S1C) - hypothesizing that these mutations would be actionable. Of the different mutants at the same position of ERBB4 amino acid sequence, the most recurrent amino acid change was selected for characterization."
Cell proliferation should be shown for BaF3 cells for continuity in Figure 2 instead of doubling time.
We agree that it may cause confusion that the results for the Ba/F3 and MCF10a experiments in Fig. 2C and D (Fig. 2D and E in the revised manuscript) are reported using a different metric. The reason for this is that these assays measure different outputs: in the Ba/F3 assay, the emergence of proliferating cells under IL3 deprivation is measured, with repeated cell viability measurements over time. In the MCF10a experiment, the ability of ERBB4 mutations to sustain the proliferation of MCF10a cells in the absence of EGF is measured, using a fixed time point (8 days). Thus, doubling time, as an indicator for the time required for the emergence of proliferating cells, is more suitable metric to quantify the relative transforming capability of the different ERBB4 mutations in the Ba/F3 cells. In the case of MCF10a cells, the relevant metric is the cell viability (as a surrogate marker for the number of cells) at the endpoint measurement.
The relative expression of HER3 constructs must be shown for BaF3 and MCF10A cells in Figure 2.
We assume the reviewer is asking to demonstrate the expression levels of different ERBB4 mutants in the Ba/F3 and MCF10a cells used in experiments in Fig. 2C and D (Fig. 2D and E in the revised manuscript). We would like to thank the reviewer for this very relevant point. Western blots demonstrating the expression levels of different ERBB4 mutants in the Ba/F3 and MCF10a cells have now been added as a data new panel in the Figure 2 (Fig. 2B in the revised manuscript). No ERBB3 expression constructs were introduced into the cells.
Blots in Figure 4 must be quantified.
The blots in Figure 4 have now been quantified, and the relative signal intensities are shown below each blot. We thank the reviewer for suggesting this relevant analysis. The analysis revealed two issues that we have now revised:
- in Fig. 4D, the dimerization of EGFR with ERBB4 S303F is not convincingly increased when compared to EGFR dimerization with wild-type ERBB4. Therefore, we have omitted that conclusion from the results section:
"Taking into account these expression level differences, ERBB4 S303F did indeed co-immunoprecipitate more efficiently than wild-type ERBB4 with ERBB2 and EGFR both in the presence or absence of NRG-1 (Fig. 4D), demonstrating that the S303F mutation promotes the formation of ERBB heterodimers."
Omitting this data does not change our final conclusion, that the ERBB4 S303F mutation leads to enhanced ERBB4 heterodimerization.
- In Fig. 4C, the previously published ERBB4 D595V mutant, used as a control in the experiment, does not clearly demonstrate enhanced ERBB4 homodimerization after quantifying the blots. Therefore, we have cropped the lanes representing the ERBB4 D595V mutant from the blot, and omitted the part of the results text that discusses this ERBB4 mutant:
"ERBB4 homodimers were assessed by crosslinking cell surface proteins with a cell membrane impermeable BS3, enabling detection of ERBB4 dimers as high molecular weight species of ERBB4 in western blot. Another activating extracellular ERBB4 mutation, D595V, was used as a positive control, as we have previously demonstrated D595V to stabilize ERBB4 dimers using the same assay (Kurppa et al., 2016). As predicted by the structural analyses, S303F resulted in more abundant active, phosphorylated ERBB4 dimers than wild-type ERBB4 in the presence of NRG-1, while the activating intracellular domain mutation L798R, that served as a negative control for dimer stabilization, did not (Fig. 4C)."
Omitting these data does not change our final conclusion, that the ERBB4 S303F mutation leads to enhanced ERBB4 homodimerization.
There are major concerns with Supplemental files. It is imperative that the effectiveness of HER3 shRNA be shown in S Fig3. These data are not interpretable without this.
We apologize for confusion related to the supplemental files. The effectiveness of the ERBB3 (HER3) shRNA is shown in the Supplementary Figure S3B of the original submitted manuscript.
Lanes in S Fig 4 are not marked again making data not interpretable.
Some of the lanes in the Supplementary Figure 4B were not marked because the experiment contained other ERBB4 constructs in addition to the ones that are marked and discussed in the manuscript text. The reason for leaving the unmarked lanes in the final figure was to emphasize that the bands indicated come from the same membrane, blot and exposure. We understand how this may cause confusion, and thus have now cropped the blots to include only the lanes discussed in the manuscript text.
It's unclear why Table 1 is included as this is already published data. This previously published data should be summarized in the text.
We are happy to elaborate the novelty of the data in Table 1 of the original submitted manuscript. The data is from the SUMMIT trial (NCT01953926) (Hyman et al., 2018), the results of which have been published. However, the three patients in the top part of the table were enrolled to the SUMMIT trial based on the ERBB4mutation in their tumor, and the data for these patients have not previously been published. We received these data directly from Puma Biotechnology. In addition, while the ERBB4 mutation status for the patients in the lower part of the table has been published in the supplementary files of the Hyman and others publication, we feel that the patients' ERBB4 mutations merit discussion, and including these patient data in the table would complement the data on the three patients in the top part of the table. Due to these reasons, we feel that the table contains unpublished and relevant data for the study, and would like to keep the table in the manuscript by moving it into the Supplementary Data (Supplementary Table S2).
To clarify the sources of the patient data, we have modified the methods section related to the table as follows:
"Neratinib efficacy data, cancer types and co-alterations of patients harboring an ERBB4 alteration, enrolled in PUMA-NER-5201, the SUMMIT trial (NCT01953926), and treated with neratinib as a single agent (240 mg/day) were obtained from Puma Biotechnology (for patients enrolled based on an ERBB4 mutation - previously unpublished data) and cBioPortal (for patients with ERBB4 as a co-altered gene, enrolled based on an ERBB2 or ERBB3 mutation)."
This text is now moved to "Supplementary Methods" under a new section "Neratinib efficacy in patients" on page 9 of the revised Supplementary Data -file
There is a disconnect why the last two figures focus on a single model of NSCLC whereas the three most transforming mutations are found most commonly in breast, melanoma and GI tract cancers.
The reviewer is correct in that the most transforming ERBB4 mutations are indeed found most commonly in beast and esophagogastric cancers and in melanoma. However, in the context of targeted therapy resistance,mutations that confer resistance are often acquired during therapy, and may not represent the typical cancer type-specific mutational patterns. The strongest evidence for a potential role of mutant ERBB4 in therapy resistance comes from the context of EGFR-targeted therapies and lung cancer. As mentioned in the results and discussion sections of the submitted manuscript, ERBB4 mutations identified in patients who developed resistance to EGFR-targeted therapy (Cremolini et al., 2019; Jänne et al., 2022), include the same mutation or mutation in the same residue as analyzed in the current study: the strongly transforming S303F or L798I. In addition, a recent study showed that EGFR-mutant lung cancer patients with co-occurring ERBB4 mutations have shorter relapse-free survival on osimertinib treatment (Vokes et al., 2022). Therefore, we focused on EGFR-mutant lung cancer as the model system to assess, as proof-of-concept, whether activating, transforming ERBB4 mutations are able to confer resistance to EGFR-targeted therapy. To make the transition to cancer therapy resistance and the rationale for choosing the model context more clear, we have added text to the start of the "Activating ERBB4 mutations drive resistance to EGFR-targeted therapy in EGFR-mutant NSCLC cells" -chapter of the revised manuscript:
"There is emerging evidence associating ERBB4 with cancer therapy resistance across various cancer types and treatment regimens (Merimsky et al., 2001, 2002; Mendoza-Naranjo et al., 2013; Nafi et al., 2014; Saglam et al., 2017; Wege et al., 2018; Wang et al., 2019; Zhang et al., 2023; Debets et al., 2023; Albert et al., 2024; Arribas et al., 2024), including ERBB4 mutations that have been found in patient tumors after acquisition of therapy resistance (Cremolini et al., 2019; Jänne et al., 2022; Vokes et al., 2022; Yaeger et al., 2023; Yuan et al., 2023). Intriguingly, the ERBB4 mutations identified in patients who developed resistance to EGFR-targeted therapy (Cremolini et al., 2019; Jänne et al., 2022), include the same mutation or mutation in the same residue as analyzed in the current study: the strongly transforming S303F or L798I. In addition, co-occurring ERBB4 mutations in EGFR-mutant lung cancer patients have been shown to associate with shorter progression-free survival on EGFR inhibitor therapy (Vokes et al., 2022). These observations point to the possibility that mutant ERBB4 could promote resistance to targeted therapies."
What are the differences in the recurrent ERBB4 mutant tumors versus ERBB4 wild-type tumors described in Figure 7?
The reviewer points out a very relevant question. We suspect that in the tumors expressing mutant ERBB4, the activating ERBB4 mutants are able to compensate for the loss of EGFR signaling, particularly since the on-treatment cancer cells demonstrate elevated levels of ERBB4 ligands (Fig. 7C, D). This is analogous to accumulating evidence suggesting that ERBB4 independently and together with ERBB3 (and/or with increased availability of their ligands) compensate for survival and growth signaling upon ERBB2- or EGFR-targeted therapy (Carrión-Salip et al., 2012; Wilson et al., 2012; Nafi et al., 2014; Canfield et al., 2015; Yonesaka et al., 2015; Donoghue et al., 2018; Shi et al., 2018; Debets et al., 2023; Udagawa et al., 2023). Unfortunately, we are unable to approach this hypothesis using samples from the in vivo experiment in Fig.7. The treatment of the mice was stopped after 189 days of treatment in order to assess how many tumors grew back (i.e. how many mice were cured by the treatment). For this reason, we do not have the appropriate controls to analyze ERBB4 mutant-associated changes in on-treatment tumors.
Figure 7C, D should be moved to supplemental as this is from previously published data and not strictly relevant to data shown in Fig 7.
The data shown in Fig. 7C and D are a re-analysis of published single-cell RNA-seq data. While the single cell RNA-sequencing data set is previously published, the analysis of ERBB4 ligand expression performed, and shown in Fig. 7C and D has not been published before. We feel that these data provide evidence of a previously unrecognized upregulation of ERBB4 ligand expression in on-treatment EGFR-mutant NSCLC cells in vivo. Furthermore, as discussed in the results section of the original submitted manuscript (page 26; page 28 of the revised manuscript), the upregulation of ERBB4 ligands in the on-treatment tumors provides a plausible mechanism supporting mutant ERBB4 activation upon EGFR inhibitor treatment, as the transforming ERBB4 mutants seem to retain at least partly the dependency of ligand stimulation. Thus, we feel that these data are unpublished and relevant for the manuscript, and we would like to keep these data panels in the main Figure 7.
Limitations should include consideration of endogenous levels of ERBB4 in the model systems used and disparate expression levels of wt ERBB4 versus ERBB4 mutation.
We thank the reviewer for pointing out that we have not thoroughly disclosed the endogenous levels of ERBB4 expression in the used model systems. None of the used model systems (MCF10a, Ba/F3, COS-7, PC-9) express detectable levels of ERBB4 protein. This was mentioned in the original submitted manuscript for COS-7 (page 19; page 20 of the revised manuscript), Ba/F3 cells (page 18; page 19 of the revised manuscript), and PC-9 cells (page 24; page 24 of the revised manuscript), but not for MCF10a cells. We have now made this point more clear, and added a sentence "Neither of these models express detectable levels of ERBB4" in the results section under the chapter "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" (page 12-13 of the revised manuscript), as well as to the discussion section (page 30 of the revised manuscript).
Regarding the expression levels of different ERBB4 mutants versus ERBB4 wild-type, we have now added the new Figure 2B, showing the expression of all ERBB4 mutants and ERBB4 wild-type in Ba/F3 and MCF10a cells. We have also included the following text describing the expression levels of ERBB4 mutants in the results section under "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" (page 13 of the revised manuscript):
"The different ERBB4 mutants demonstrated similar expression levels compared to wild-type ERBB4 in both model systems with the exception of R106C and G907E mutants that were expressed predominantly as immature receptor forms in both models, suggesting defective receptor maturation. Also, the R1304W mutant demonstrated lower expression levels in the Ba/F3 cells, and could not be expressed at all in the MCF10a cells (Fig. 2B)."
Minor comments:
Fig1B lists ERBB3 V104V mutation?
Thank you for noticing this mistake. This has now been corrected in the revised Figure 1B.
List frequency of ERBB4 mutations in the introduction
We thank the reviewer for the suggestion and have revised the introduction to include an example of the high frequency of ERBB4 missense mutations in cancer as follows:
"Yet, despite the high frequency of ERBB4 missense mutations in various cancer types (up to 30% in non-melanoma skin cancer, Supplementary Fig. S1A, B) and characterization of several potentially oncogenic ERBB4 mutations (Prickett et al. 2009; Nakamura et al. 2016; Chakroborty et al. 2022; Kurppa et al. 2016; Tvorogov et al. 2009), the rationale for clinically targeting ERBB4 in cancer has not been fully developed."
Clarification throughout if cells are serum-starved (how long) if stimulated with NRG-1
We thank the reviewer for the thoughtful suggestion and have revised the main text and figure legends accordingly; in the revised manuscript on pages 6, 8, 9, 13, 17, 20, 25 and 26 "(10% serum)", on page 25 "following short-term stimulation with NRG-1 after overnight serum starvation (Fig. 6A).", as well as figure legends of Fig. 2, 4, 5, 6, S2, and S3.
Reviewer #1 (Significance (Required)):
General assessment: This work fills a gap in cancer research understanding if ERBB4 mutations could be targeted. Concerns and comments need to be addressed before definitive conclusions can be made.
The authors wish to thank the reviewer for the positive assessment.
Reviewer #2
(Evidence, reproducibility and clarity (Required)):
Ojala et al. report a very extensive exploration of the functional relevance of somatic mutations occurring in the ERBB4 gene. The Authors demonstrate that 11 out of 18 mutations they studied have oncogenic potential, with some of them actionable using clinically available ERBB inhibitors, while giving resistance to EGFR inhibitors.
A very minor comment. At the beginning of page 21, I'd not define PD as the best respone. The Authors can write that all four patients progressed under treatment.
We would like to thank the reviewer for the comment. We agree with the reviewer, and have now revised the sentence in question as follows:
"Two of the three patients that were qualified for the SUMMIT trial due to a mutation in ERBB4, with no other qualifying mutations in ERBB family genes, had an ERBB4 mutation characterized in this study to be transforming (R544W and V840I) (Supplementary Table S2). Yet, neither of these patients, nor the patient with an ERBB4 VUS N465K, responded to neratinib and progressed under treatment (Supplementary Table S2)."
Reviewer #2 (Significance (Required)):
The work by Ojala et al. is the most detailed study of mutations occurring in ERBB4. Since these are relatively rare, they have not been properly studied up to now. The study is very well done.
The authors wish to thank the reviewer for the very positive statement.
Reviewer #3
(Evidence, reproducibility and clarity (Required)):
Summary
- This work has mined cBioPortal to identify candidate cancer driver mutations in the gene encoding the ERBB4 receptor tyrosine kinase (Figure 1). These ERBB4 mutations occurred in clusters that are paralogous to activating mutations in other ERBB receptor genes or in clusters predicted to serve as dimerization interfaces of ERBB4. Eighteen such ERBB4 mutations were selected for characterization.
- These mutants were tested in BaF3 and MCF-10A cells in the context of the ERBB4 JM-a CYT-2 isoform (Figure 2). Several of these ERBB4 mutants exhibited greater agonist-dependent coupling to cell proliferation than wild-type ERBB4. Moreover, some of the mutants exhibited greater agonist-independent coupling to cell proliferation than wild-type ERBB4. Five ERBB4 mutants (S303F, E452K, L798R, R992C, S1289A) exhibited greater activity in the BaF3 cells, whereas nine ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R) exhibited greater activity in the MCF10A cells. Thus, eleven of the ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R, R992C, S1289A) exhibited a gain-of-function phenotype. It should be noted that several of the ERBB4 gain-of-function mutants (R393W, R544W, R711C, V840I, G870R, R992C, S1289A) exhibited cell type specificity.
- PyMol was used to "model" the effect of the most potent (S303F, E452K, and L798R) gain-of-function mutations on the structure of ERBB4 (Figure 3). These three mutations are predicted to cause increased ERBB4 dimerization.
- When expressed in MCF-10A cells, the most potent (S303F, E452K, and L798R) gain-of-function ERBB4 mutants exhibited elevated ligand-dependent and ligand-independent tyrosine phosphorylation. This was accompanied by elevated EGFR, ERBB2, and ERBB4 tyrosine phosphorylation and elevated signaling by canonical effector proteins (Figure 4).
- The homo- and heterodimerization of the most potent ERBB4 mutant (S303F) was studied following transient transfection of COS-7 cells (Figure 4). As predicted, the S303F mutant exhibited greater ERBB4 homodimerization and greater heterodimerization with EGFR and ERBB2, but not with ERBB3.
- The data from the clinical trial NCT01953926 was mined to evaluate whether the presence of an ERBB4 activating mutation found in this work is associated with sensitivity to the pan-ERBB inhibitor neratinib (Table 1). Surprisingly, a compelling association was NOT found. In contrast, the proliferation of BaF3 cells that express gain-of-function ERBB4 mutants is sensitive to the irreversible pan-ERBB inhibitors neratinib, afatinib, and dacomitinib (Figure 5).
- Mining the cBioPortal, AACR GENIE, and COSMIC datasets indicates that the three most potent ERBB4 gain-of-function mutants (S303F, E452K, and L798R) exhibit tissue specificity (Supplementary Figure S5). Moreover, the S303F mutation is coincident with a mutation in another ERBB receptor to a much lesser degree than other gain-of-function ERBB4 mutants, particularly E452K. This too is suggestive of differences in the mechanism of action among the gain-of-function ERBB4 mutants (Supplementary Figure S5).
- To test the effect of ERBB4 gain-of-function mutants on resistance to EGFR inhibitors, PC-9 NSCLC cells (which contain an endogenous gain-of-function EGFR mutant but do not endogenously express ERBB4) were transduced with ERBB4 gain-of-function mutants. In these cells the S303F and L715K mutants exhibited elevated ERBB4 signaling, but the L798R and K935I mutants did not. Nonetheless, the S303F, E715K, and K935I mutants promoted osimertinib resistance upon long-term treatment in vitro, whereas the L798R mutant did not (Figure 6). Moreover, the E715K and S303F mutants caused osimertinib resistance in vivo.
- Overall, this is an impressive body of work. The experiments have been carefully performed and the data are clearly presented. However, the breadth of this work makes it a bit unfocused and difficult to digest.
The authors wish to thank the reviewer for the positive statement.
Major Issues Affecting the Conclusions
The COS-7 data in Figure 4 are probably generated using supraphysiological levels of ERBB4 expression, raising concerns about the ability to draw general conclusions from these data. This issue should be addressed.
We appreciate the reviewer's insight on the details concerning experimentation in COS-7 cells. We acknowledge the drawbacks in experiments performed using transient overexpression of proteins in COS-7 cells using vectors with strong viral promoters. To mitigate these drawbacks, we routinely perform transient overexpression in COS-7 cells using the retroviral pBABE-vectors, which have a weak promoter and produce relatively moderate protein expression level. We have included here a reviewer-only figure (Reviewer-only Figure 2) that demonstrates the ERBB4 expression level derived from the pBABE-vector, compared to endogenous expression level of ERBB4 in T47D and MCF7 cells, as well as to ERBB4 expression derived from pcDNA3.1 vector that harbors a strong viral CMV promoter. With this, we hope to convince the reviewer that the ERBB4 expression levels in our COS-7 cell experiments are not supraphysiological.
Reviewer-only Figure 2. The expression level of ERBB4 in T47D and MCF7 cells, as well as in COS-7 cells transiently transfected with equal amounts of pBABE-puro-gateway-ERBB4JM-aCYT-2 plasmid, or pcDNA3.1.-ERBB4JM-aCYT-2 plasmid.
The inhibitor data shown in Figure 5 may be over-interpreted. The affinity of neratinib, afatinib, and dacomitinib for EGFR is reportedly higher than the affinity of these drugs for ERBB4. Thus, the failure of ERBB4 gain-of-function mutants to cause resistance to these inhibitors may be because the inhibitors bind to endogenous EGFR and therefore fail to bind to ERBB4.
We thank the reviewer for the insightful comments. The experiments in Figure 5 were performed in Ba/F3 cells, which do not express endogenous EGFR, or other kinase competent ERBB receptors (Riese et al., 1995). Therefore, it is unlikely that the observed cellular responses to neratinib, afatinib, or dacomitinib are affected by the drugs' preferable binding to EGFR.
Moreover, the conclusion that the gain-of-function ERBB4 mutants are targetable with these inhibitors appears to be an overreach.
We have revised our conclusion into that ERBB4 mutants are "sensitive to" these inhibitors, as supported by our data in Figure 5. This revision has been made in the abstract (page 2), introduction section (page 4), results section (page 23), and in the discussion (page 31) of the revised manuscript.
The inhibitor data shown in Figure 6 demonstrates that activating ERBB4 mutations are sufficient to drive inhibitor resistance. However, these data do not demonstrate that the mutations are necessary to drive inhibitor resistance. Thus, these data are of less value than represented in this work. Knockout or silencing (CRISPR or siRNA) experiments would be more definitive.
We agree with the reviewer that performing knock-out or silencing experiments to demonstrate the necessity of mutant ERBB4 for inhibitor resistance would strengthen the conclusions. However, the PC-9 cells (or any other EGFR-mutant NSCLC cell lines) do not express endogenous ERBB4, and do not have endogenous ERBB4 mutations. Therefore, knock-out or silencing experiments are unfortunately not possible in this setting.
Minor Issues That Can Confidently Be Addressed
In Figure 2, the MCF10A data are more compelling than the BaF3 data. Thus, an argument can be made that the BaF3 data belong in a supplemental figure. However, the combination of data from both cell lines illustrate the fact that ERBB4 mutants appear to exhibit cell type specificity. If this point is emphasized in the text, then Figure 2 should remain as currently presented.
We agree with the reviewer that our data suggest that the ERBB4 mutants demonstrate a level of context-specificity. This was mentioned in the results section of the original submitted manuscript (page 20; page 21 of the revised manuscript) as well as discussed in the discussion section (page 29; page 29 of the revised manuscript). To emphasize this further, we have revised our conclusions at the end of the "Majority of the recurrent ERBB4 mutations are transforming in Ba/F3 or MCF10a cells" -section as follows:
"Taken together, these analyses indicate a potential oncogenic role for 11 recurrent ERBB4 mutations. Eight of the mutations were transforming in only one of the models used, suggesting context-specificity. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1."
The modeling data shown in Figure 3 are a bit under-interpreted. It would appear that the S303F, E452K, and L798R mutants would cause increased ERBB4 signaling by (1) shifting the equilibrium of ERBB4 monomers between the tethered (inactive) state and the extended (active) state or by (2) directly fostering receptor dimerization. The modeling data should be interpreted in the context of these two paradigms.
We thank the reviewer again for an insightful observation. We have now revised the text describing the modeling data based on the reviewer's suggestions (please see the revised manuscript, under "Structural analysis of the transforming ERBB4 mutations").
The mechanistic data shown in Figure 4 are also a bit under-interpreted. The data from Figure 2 suggest that ERBB4 gain-of-function mutants are more likely to promote ERBB4 heterodimerization than ERBB4 homodimerization. Do the data from Figure 4 support this hypothesis?
The authors agree with the reviewer in that the activating ERBB4 mutations lead to increased activation of other ERBB family members (Fig. 4A), supporting a hypothesis that activating ERBB4 mutations lead to increased heterodimerization. We have discussed this throughout the original submitted manuscript, for example making these conclusions:
Results section, page 16 (page 18 of the revised manuscript): "In summary, these data indicate that S303F, E452K and L798R are activating, gain-of-function ERBB4 mutations that may co-operate with other ERBB receptors in malignant transformation.", page 19 (page 20 of the revised manuscript): "Together, these data suggest that while ERBB4 can be transforming in the absence of other ERBB receptors, mutant ERBB4 co-operates with ERBB3 to promote ligand-independent cell transformation.".
Discussion section, page 30 (page 31 of the revised manuscript: "Together, these findings imply that ERBB4 heterodimers with other ERBB receptors can contribute to cell transformation and growth, supporting the rationale for pan-ERBB inhibition approach in targeting mutant ERBB4 in cancer."
Reviewer #3 (Significance (Required)):
General Assessment: Strengths and Limitations
- This work makes a significant contribution to the hypothesis that ERBB4 gain-of-function mutants drive multiple human malignancies. However, this work dances around two issues. (1) Is heterodimerization of EGFR or ERBB2 with ERBB4 required for the transforming activity of these ERBB4 mutants? (2) Are these ERBB4 mutants found in the context of the JM-a/CYT-2 isoform or some other isoform? Are these ERBB4 mutants active in the context of isoforms other than JM-a/CYT-2?
We thank the reviewer for the very positive assessment and insight on specific ERBB4 biology that could affect the functional effect of mutations in ERBB4. We would like to comment on these insights:
Since the strongly transforming ERBB mutations all promoted the activation of EGFR, ERBB2, and ERBB3 (Fig. 4A), it is possible that heterodimerization plays a role in the transforming activity of these ERBB4 mutants. However, our data suggests that EGFR and ERBB2 are not necessary for transformation, since the Ba/F3 cells, where transformation by ERBB4 mutants was observed (Fig. 2D), do not express EGFR or ERBB2. We did see a consistent upregulation of endogenous ERBB3 upon IL3 deprivation in the ERBB4 S303F -expressing Ba/F3 cells (Fig. 4B), which contributed to the ERBB4 S303F -driven, IL3-independent transformation (Supplementary Fig. S3C-D).
None of the analyzed ERBB4 mutations are located in the JM- or CYT-regions of ERBB4, and thus could hypothetically be expressed in the context of any of the four ERBB4 isoforms. However, cancer tissues almost exclusively express the JM-a isoforms of ERBB4, with roughly similar ratios of CYT-1 and CYT-2 isoforms. We chose to use the JM-a CYT-2 isoform in this study, based on our previous work that has implicated the JM-a CYT-2 isoform as being more oncogenic than JM-a CYT-1 isoform, as elaborated in the original submitted manuscript: "The ERBB4 JM-a CYT-2 isoform was used in the studies based on previous findings suggesting that JM-a CYT-2 is the more oncogenic ERBB4 isoform of the cancer-associated isoforms (Veikkolainen et al., 2011) in hematopoietic cell contexts (relevant for the Ba/F3 cell model) (Määttä et al., 2006; Chakroborty et al., 2022)". We do agree with the reviewer that future studies should determine the relative contribution of JM-a CYT-1 and JM-a CYT-2 isoforms in the ability of mutant ERBB4 to drive cancer growth.
Advance: How Does This Work Advance the Field
- This work will undoubtedly reinvigorate the ERBB4 field.
Audience:
- Those with an interest in the role that ERBB receptors play in human tumors.
My Expertise:
- 30+ years of experience studying ERBB receptors.
REFERENCES
Albert, V. et al. (2024) 'HER4 Affects Sensitivity to Tamoxifen and Abemaciclib in Luminal Breast Cancer Cells and Restricts Tumor Growth in MCF-7-Based Humanized Tumor Mice', International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute, 25(13), p. 7475. doi: 10.3390/ijms25137475.
Arribas, A. J. et al. (2024) 'ERBB4-mediated signaling is a mediator of resistance to BTK and PI3K inhibitors in B cell lymphoid neoplasms', Molecular Cancer Therapeutics, 23(3), pp. 368-380. doi: https://doi.org/10.1158/1535-7163.MCT-23-0068.
Bose, R. et al. (2013) 'Activating HER2 mutations in HER2 gene amplification negative breast cancer', Cancer Discovery, 3(2), pp. 224-237. doi: 10.1158/2159-8290.CD-12-0349.
Bouyain, S. et al. (2005) 'The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand', Proceedings of the National Academy of Sciences. National Academy of Sciences, 102(42), pp. 15024-15029. doi: 10.1073/pnas.0507591102.
Canfield, K. et al. (2015) 'Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells', Cell Cycle. Taylor & Francis, 14(4), pp. 648-655. doi: 10.4161/15384101.2014.994966.
Carrión-Salip, D. et al. (2012) 'Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands', International Journal of Oncology. Int J Oncol, 41(3), pp. 1128-1138. doi: 10.3892/ijo.2012.1509.
Chakroborty, D. et al. (2022) 'An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations', Cancer Research Communications, 2(1), pp. 10-27. doi: 10.1158/2767-9764.crc-21-0021.
Cremolini, C. et al. (2019) 'Benefit from anti-EGFRs in RAS and BRAF wild-type metastatic transverse colon cancer: A clinical and molecular proof of concept study', ESMO Open, 4(2), p. e000489. doi: 10.1136/esmoopen-2019-000489.
Debets, D. O. et al. (2023) 'Deep (phospho)proteomics profiling of pre- treatment needle biopsies identifies signatures of treatment resistance in HER2+ breast cancer', Cell Reports Medicine. Elsevier, 4(10), p. 101203. doi: 10.1016/j.xcrm.2023.101203.
Donoghue, J. F. et al. (2018) 'Activation of ERBB4 in glioblastoma can contribute to increased tumorigenicity and influence therapeutic response', Cancers. Multidisciplinary Digital Publishing Institute (MDPI), 10(8), p. 243. doi: 10.3390/cancers10080243.
Ferguson, K. M. et al. (2003) 'EGF Activates Its Receptor by Removing Interactions that Autoinhibit Ectodomain Dimerization', Molecular Cell, 11(2), pp. 507-517. doi: 10.1016/S1097-2765(03)00047-9.
Greulich, H. et al. (2005) 'Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants', PLOS Medicine. Public Library of Science, 2(11), p. e313. doi: 10.1371/JOURNAL.PMED.0020313.
Greulich, H. et al. (2012) 'Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2', Proceedings of the National Academy of Sciences. National Academy of Sciences, 109(36), pp. 14476-14481. doi: 10.1073/pnas.1203201109.
Hyman, D. M. et al. (2018) 'HER kinase inhibition in patients with HER2-and HER3-mutant cancers', Nature. Nature Publishing Group, 554(7691), pp. 189-194. doi: 10.1038/nature25475.
Jaiswal, B. S. S. et al. (2013) 'Oncogenic ERBB3 Mutations in Human Cancers', Cancer Cell, 23(5), pp. 603-617. doi: 10.1016/j.ccr.2013.04.012.
Jänne, P. A. et al. (2022) 'Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor- Resistant, EGFR-Mutated Non-Small Cell Lung Cancer', Cancer Discovery. American Association for Cancer Research, 12(1), pp. 74-89. doi: 10.1158/2159-8290.CD-21-0715.
Kurppa, K. J. et al. (2016) 'Activating ERBB4 mutations in non-small cell lung cancer', Oncogene. Nature Publishing Group, 35(10), pp. 1283-1291. doi: 10.1038/onc.2015.185.
Lee, J. C. et al. (2006) 'Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain', PLoS Medicine | www, 3. doi: 10.1371/journal.
Liu, P. et al. (2012) 'A single ligand is sufficient to activate EGFR dimers', Proceedings of the National Academy of Sciences, 109(27), pp. 10861-10866. doi: 10.1073/pnas.1201114109.
Määttä, J. A. et al. (2006) 'Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth', Molecular Biology of the Cell, 17(1), pp. 67-79. doi: 10.1091/mbc.E05-05-0402.
Mendoza-Naranjo, A. et al. (2013) 'ERBB4 confers metastatic capacity in Ewing sarcoma', EMBO Molecular Medicine. Nature Publishing Group, 5(7), pp. 1019-1034. doi: 10.1002/emmm.201202343.
Merimsky, O. et al. (2001) 'Correlation between c-erbB-4 receptor expression and response to gemcitabine-cisplatin chemotherapy in non-small-cell lung cancer', Annals of Oncology. Ann Oncol, 12(8), pp. 1127-1131. doi: 10.1023/A:1011665216616.
Merimsky, O. et al. (2002) 'ErbB-4 expression in limb soft-tissue sarcoma: Correlation with the results of neoadjuvant chemotherapy', European Journal of Cancer. Eur J Cancer, 38(10), pp. 1335-1342. doi: 10.1016/S0959-8049(02)00075-8.
Nafi, S. N. M. et al. (2014) 'Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer', Oncotarget. Impact Journals, LLC, 5(15), pp. 5934-5949. doi: 10.18632/oncotarget.1904.
Nakamura, Y. et al. (2016) 'Afatinib against esophageal or head-and-neck squamous cell carcinoma: Significance of activating oncogenic HER4 mutations in HNSCC', Molecular Cancer Therapeutics. American Association for Cancer Research, 15(8), pp. 1988-1997. doi: 10.1158/1535-7163.MCT-15-0737.
Prickett, T. D. et al. (2009) 'Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4.', Nature genetics, 41(10), pp. 1127-1132. doi: 10.1038/ng.438.
Riese, D. J. et al. (1995) 'The cellular response to neuregulins is governed by complex interactions of the erbB receptor family', Molecular and Cellular Biology, 15(10), pp. 5770-5776. doi: 10.1128/mcb.15.10.5770.
Saglam, O. et al. (2017) 'ERBB4 Expression in Ovarian Serous Carcinoma Resistant to Platinum-Based Therapy', Cancer control. NIH Public Access, 24(1), p. 89. doi: 10.1177/107327481702400115.
Shi, J. et al. (2018) 'The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition', Oncogene, 37(22), pp. 3022-3038. doi: 10.1038/s41388-018-0204-5.
Tvorogov, D. et al. (2009) 'Somatic mutations of ErbB4: Selective loss-of-function phenotype affecting signal transduction pathways in cancer', Journal of Biological Chemistry, 284(9), pp. 5582-5591. doi: 10.1074/jbc.M805438200.
Udagawa, H. et al. (2023) 'HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies', Journal of Thoracic Oncology. Elsevier Inc, 19(1), pp. 106-118. doi: 10.1016/j.jtho.2023.08.034.
Veikkolainen, V. et al. (2011) 'Function of ERBB4 is determined by alternative splicing', Cell Cycle, 10(16), pp. 2647-2657. doi: 10.4161/cc.10.16.17194.
Vokes, N. I. et al. (2022) 'Concurrent TP53 mutations facilitate resistance evolution in EGFR mutant lung adenocarcinoma', Journal of Thoracic Oncology. International Association for the Study of Lung Cancer, 17(6), pp. 779-792. doi: 10.1016/j.jtho.2022.02.011.
Wang, D. S. et al. (2019) 'Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer', Gut. BMJ Publishing Group, 68(7), pp. 1152-1161. doi: 10.1136/gutjnl-2018-316522.
Wege, A. K. et al. (2018) 'HER4 expression in estrogen receptor-positive breast cancer is associated with decreased sensitivity to tamoxifen treatment and reduced overall survival of postmenopausal women', Breast Cancer Research. Breast Cancer Res, 20(1). doi: 10.1186/s13058-018-1072-1.
Wilson, T. R. et al. (2012) 'Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors', Nature. Nature Publishing Group, 487(7408), pp. 505-509. doi: 10.1038/nature11249.
Yaeger, R. et al. (2023) 'Molecular Characterization of Acquired Resistance to KRASG12C-EGFR Inhibition in Colorectal Cancer', Cancer Discovery, 13(1), pp. 41-55. doi: 10.1158/2159-8290.CD-22-0405.
Yonesaka, K. et al. (2015) 'The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer.', Oncotarget. Oncotarget, 6(32), pp. 33602-11. doi: 10.18632/oncotarget.5286.
Yuan, S. Q. et al. (2023) 'Residual circulating tumor DNA after adjuvant chemotherapy effectively predicts recurrence of stage II-III gastric cancer', Cancer Communications. John Wiley & Sons, Ltd, 43(12), pp. 1312-1325. doi: 10.1002/cac2.12494.
Zhang, J. et al. (2023) 'Tracking of trastuzumab resistance in patients with HER2-positive metastatic gastric cancer by CTC liquid biopsy.', American journal of cancer research. e-Century Publishing Corporation, 13(11), pp. 5684-5697. Available at: http://www.ncbi.nlm.nih.gov/pubmed/38058840 (Accessed: 16 April 2024).
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
- This work has mined cBioPortal to identify candidate cancer driver mutations in the gene encoding the ERBB4 receptor tyrosine kinase (Figure 1). These ERBB4 mutations occurred in clusters that are paralogous to activating mutations in other ERBB receptor genes or in clusters predicted to serve as dimerization interfaces of ERBB4. Eighteen such ERBB4 mutations were selected for characterization.
- These mutants were tested in BaF3 and MCF-10A cells in the context of the ERBB4 JM-a CYT-2 isoform (Figure 2). Several of these ERBB4 mutants exhibited greater agonist-dependent coupling to cell proliferation than wild-type ERBB4. …
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary
- This work has mined cBioPortal to identify candidate cancer driver mutations in the gene encoding the ERBB4 receptor tyrosine kinase (Figure 1). These ERBB4 mutations occurred in clusters that are paralogous to activating mutations in other ERBB receptor genes or in clusters predicted to serve as dimerization interfaces of ERBB4. Eighteen such ERBB4 mutations were selected for characterization.
- These mutants were tested in BaF3 and MCF-10A cells in the context of the ERBB4 JM-a CYT-2 isoform (Figure 2). Several of these ERBB4 mutants exhibited greater agonist-dependent coupling to cell proliferation than wild-type ERBB4. Moreover, some of the mutants exhibited greater agonist-independent coupling to cell proliferation than wild-type ERBB4. Five ERBB4 mutants (S303F, E452K, L798R, R992C, S1289A) exhibited greater activity in the BaF3 cells, whereas nine ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R) exhibited greater activity in the MCF10A cells. Thus, eleven of the ERBB4 mutants (S303F, R393W, E452K, R544W, R711C, S774G, L798R, V840I, G870R, R992C, S1289A) exhibited a gain-of-function phenotype. It should be noted that several of the ERBB4 gain-of-function mutants (R393W, R544W, R711C, V840I, G870R, R992C, S1289A) exhibited cell type specificity.
- PyMol was used to "model" the effect of the most potent (S303F, E452K, and L798R) gain-of-function mutations on the structure of ERBB4 (Figure 3). These three mutations are predicted to cause increased ERBB4 dimerization.
- When expressed in MCF-10A cells, the most potent (S303F, E452K, and L798R) gain-of-function ERBB4 mutants exhibited elevated ligand-dependent and ligand-independent tyrosine phosphorylation. This was accompanied by elevated EGFR, ERBB2, and ERBB4 tyrosine phosphorylation and elevated signaling by canonical effector proteins (Figure 4).
- The homo- and heterodimerization of the most potent ERBB4 mutant (S303F) was studied following transient transfection of COS-7 cells (Figure 4). As predicted, the S303F mutant exhibited greater ERBB4 homodimerization and greater heterodimerization with EGFR and ERBB2, but not with ERBB3.
- The data from the clinical trial NCT01953926 was mined to evaluate whether the presence of an ERBB4 activating mutation found in this work is associated with sensitivity to the pan-ERBB inhibitor neratinib (Table 1). Surprisingly, a compelling association was NOT found. In contrast, the proliferation of BaF3 cells that express gain-of-function ERBB4 mutants is sensitive to the irreversible pan-ERBB inhibitors neratinib, afatinib, and dacomitinib (Figure 5).
- Mining the cBioPortal, AACR GENIE, and COSMIC datasets indicates that the three most potent ERBB4 gain-of-function mutants (S303F, E452K, and L798R) exhibit tissue specificity (Supplementary Figure S5). Moreover, the S303F mutation is coincident with a mutation in another ERBB receptor to a much lesser degree than other gain-of-function ERBB4 mutants, particularly E452K. This too is suggestive of differences in the mechanism of action among the gain-of-function ERBB4 mutants (Supplementary Figure S5).
- To test the effect of ERBB4 gain-of-function mutants on resistance to EGFR inhibitors, PC-9 NSCLC cells (which contain an endogenous gain-of-function EGFR mutant but do not endogenously express ERBB4) were transduced with ERBB4 gain-of-function mutants. In these cells the S303F and L715K mutants exhibited elevated ERBB4 signaling, but the L798R and K935I mutants did not. Nonetheless, the S303F, E715K, and K935I mutants promoted osimertinib resistance upon long-term treatment in vitro, whereas the L798R mutant did not (Figure 6). Moreover, the E715K and S303F mutants caused osimertinib resistance in vivo.
- Overall, this is an impressive body of work. The experiments have been carefully performed and the data are clearly presented. However, the breadth of this work makes it a bit unfocused and difficult to digest.
Major Issues Affecting the Conclusions
- The COS-7 data in Figure 4 are probably generated using supraphysiological levels of ERBB4 expression, raising concerns about the ability to draw general conclusions from these data. This issue should be addressed.
- The inhibitor data shown in Figure 5 may be over-interpreted. The affinity of neratinib, afatinib, and dacomitinib for EGFR is reportedly higher than the affinity of these drugs for ERBB4. Thus, the failure of ERBB4 gain-of-function mutants to cause resistance to these inhibitors may be because the inhibitors bind to endogenous EGFR and therefore fail to bind to ERBB4. Moreover, the conclusion that the gain-of-function ERBB4 mutants are targetable with these inhibitors appears to be an overreach.
- The inhibitor data shown in Figure 6 demonstrates that activating ERBB4 mutations are sufficient to drive inhibitor resistance. However, these data do not demonstrate that the mutations are necessary to drive inhibitor resistance. Thus, these data are of less value than represented in this work. Knockout or silencing (CRISPR or siRNA) experiments would be more definitive.
Minor Issues That Can Confidently Be Addressed
- In Figure 2, the MCF10A data are more compelling than the BaF3 data. Thus, an argument can be made that the BaF3 data belong in a supplemental figure. However, the combination of data from both cell lines illustrate the fact that ERBB4 mutants appear to exhibit cell type specificity. If this point is emphasized in the text, then Figure 2 should remain as currently presented.
- The modeling data shown in Figure 3 are a bit under-interpreted. It would appear that the S303F, E452K, and L798R mutants would cause increased ERBB4 signaling by (1) shifting the equilibrium of ERBB4 monomers between the tethered (inactive) state and the extended (active) state or by (2) directly fostering receptor dimerization. The modeling data should be interpreted in the context of these two paradigms.
- The mechanistic data shown in Figure 4 are also a bit under-interpreted. The data from Figure 2 suggest that ERBB4 gain-of-function mutants are more likely to promote ERBB4 heterodimerization than ERBB4 homodimerization. Do the data from Figure 4 support this hypothesis?
Significance
General Assessment: Strengths and Limitations
This work makes a significant contribution to the hypothesis that ERBB4 gain-of-function mutants drive multiple human malignancies. However, this work dances around two issues. (1) Is heterodimerization of EGFR or ERBB2 with ERBB4 required for the transforming activity of these ERBB4 mutants? (2) Are these ERBB4 mutants found in the context of the JM-a/CYT-2 isoform or some other isoform? Are these ERBB4 mutants active in the context of isoforms other than JM-a/CYT-2?
Advance: How Does This Work Advance the Field
This work will undoubtedly reinvigorate the ERBB4 field.
Audience:
Those with an interest in the role that ERBB receptors play in human tumors.
My Expertise:
30+ years of experience studying ERBB receptors.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Ojala et al. report a very extensive exploration of the functional relevance of somatic mutations occurring in the ERBB4 gene. The Authors demonstrate that 11 out of 18 mutations they studied have oncogenic potential, with some of them actionable using clinically available ERBB inhibitors, while giving resistance to EGFR inhibitors.
A very minor comment. At the beginning of page 21, I'd not define PD as the best respone. The Authors can write that all four patients progressed under treatment.
Significance
The work by Ojala et al. is the most detailed study of mutations occurring in ERBB4. Since these are relatively rare, they have …
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Ojala et al. report a very extensive exploration of the functional relevance of somatic mutations occurring in the ERBB4 gene. The Authors demonstrate that 11 out of 18 mutations they studied have oncogenic potential, with some of them actionable using clinically available ERBB inhibitors, while giving resistance to EGFR inhibitors.
A very minor comment. At the beginning of page 21, I'd not define PD as the best respone. The Authors can write that all four patients progressed under treatment.
Significance
The work by Ojala et al. is the most detailed study of mutations occurring in ERBB4. Since these are relatively rare, they have not been properly studied up to now. The study is very well done.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: The authors identify cancer-associated ERBB4 mutations that are selected for functional characterization. Utilizing the BaF3 and MCF10A models, the authors investigate the potential oncogenic role for 11 recurrent ERBB4 mutations. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1. The authors perform modeling to decipher potential mechanisms of action of the ERBB4 S303F, E452K and L798R mutations. The authors assess the ability of HER3 mutations to dimerize with other HER family …
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: The authors identify cancer-associated ERBB4 mutations that are selected for functional characterization. Utilizing the BaF3 and MCF10A models, the authors investigate the potential oncogenic role for 11 recurrent ERBB4 mutations. Three mutants (S303F, E452K and L798R) were strongly transforming with the ability to transform both cell models, S303F being unique in its ability to transform both models in the absence of NRG-1. The authors perform modeling to decipher potential mechanisms of action of the ERBB4 S303F, E452K and L798R mutations. The authors assess the ability of HER3 mutations to dimerize with other HER family members and demonstrate that ERBB4 S303F can mediate its activating functions by stabilizing homo- and heterodimers with other ERBB receptors and that the heterodimerization is likely cell/tissue context dependent. The authors demonstrate that transforming ERBB4 mutants are sensitive to pan-ERBB inhibitors and drive resistance to EGFR-targeted therapy in EGFR-mutant NSCLC cells.
Major comments:
- Patient data analysis is performed in more than 15 months ago in January 2024. This analysis should be updated.
- The rationale for selecting the mutations to be studied is not entirely clear. There are no references to support studying mutations in Fig 1B red boxes.
- Cell proliferation should be shown for BaF3 cells for continuity in Figure 2 instead of doubling time. The relative expression of HER3 constructs must be shown for BaF3 and MCF10A cells in Figure 2.
- Blots in Figure 4 must be quantified.
- There are major concerns with Supplemental files. It is imperative that the effectiveness of HER3 shRNA be shown in S Fig3. These data are not interpretable without this. Lanes in S Fig 4 are not marked again making data not interpretable.
- It's unclear why Table 1 is included as this is already published data. This previously published data should be summarized in the text.
- There is a disconnect why the last two figures focus on a single model of NSCLC whereas the three most transforming mutations are found most commonly in breast, melanoma and GI tract cancers.
- What are the differences in the recurrent ERBB4 mutant tumors versus ERBB4 wild-type tumors described in Figure 7? Figure 7C, D should be moved to supplemental as this is from previously published data and not strictly relevant to data shown in Fig 7.
- Limitations should include consideration of endogenous levels of ERBB4 in the model systems used and disparate expression levels of wt ERBB4 versus ERBB4 mutation.
Minor comments:
- Fig1B lists ERBB3 V104V mutation?
- List frequency of ERBB4 mutations in the introduction
- Clarification throughout if cells are serum-starved (how long) if stimulated with NRG-1
Significance
General assessment: This work fills a gap in cancer research understanding if ERBB4 mutations could be targeted. Concerns and comments need to be addressed before definitive conclusions can be made.
-