The gut microbiome promotes mitochondrial respiration in the brain of a Parkinson’s disease mouse model
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The pathophysiology of Parkinson’s disease (PD) involves gene-environment interactions that impair various cellular processes such as autophagy, lysosomal function, or mitochondrial dysfunction. Specifically, mitochondria-associated gene mutations increase PD risk, mitochondrial respiration is altered in the PD brain, and mitochondrial-damaging toxins cause PD-like motor and gastrointestinal symptoms in animal models. The gut microbiome is altered in PD patients and represents an environmental risk, however a relationship between mitochondrial function and the microbiome in PD has not been previously established. Herein, we report that striatal mitochondria are functionally overactive in α-synuclein-overexpressing (ASO) mice, a model of PD, and that microbiome depletion restores respiration and mitochondria-associated gene expression patterns to wild-type levels. ASO mice harboring a complex microbiome produce increased reactive oxygen species in the striatum whereas germ-free counterparts express elevated levels of antioxidant proteins that may buffer against oxidative damage. Indeed, antioxidant treatment improves motor performance in ASO mice and, remarkably, blocking oxidant scavenging in germ-free mice induces α-synuclein-dependent motor deficits. Thus, the gut microbiome increases mitochondrial respiration and oxidative stress in the brain, which enhances motor symptoms in a mouse model of PD.