Diminished functional gradient of the precuneus during altered states of consciousness

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The relationship between the default mode network (DMN) and task-positive networks, such as the frontoparietal control network (FPCN), is a prominent feature of functional connectivity (FC) in the human brain. This relationship is primarily anticorrelated at rest in healthy brains and is disrupted in altered states of consciousness. Although the DMN and FPCN seem to perform distinct and even opposing roles, they are anatomically adjacent and exhibit ambiguous boundaries. To test the hypothesis that the DMN-FPCN distinction manifests probabilistically rather than having absolute anatomical boundaries, we examined the differences in FC along the dorsal-ventral (d-v) axis in the posterior precuneus (PCu), which serves a convergence zone between the DMN and FPCN. Our findings indicate that the connectivity differences along this axis are continuous as characterized by linear slopes. Notably, these linear relationships (i.e., functional gradients of the precuneus/FGp) are present only within the territories of the DMN and FPCN, respectively associating with positive and negative slopes. Furthermore, the gradient is functionally relevant, as its spatial configurations change in specific ways in altered states of consciousness (ASC): the magnitude of FGp is similarly impaired across different types of ASC, while the spatial entropy of FGp differs between psychedelic and sedative states. These results suggest that the DMN and FPCN, while appearing distinct, may originate from a single, integrated mechanism.

Significance Statement

This research provides new insights into the brain’s functional organization underlying human conscious states by examining the relationship between two large-scale networks: the default mode network (DMN) and the frontoparietal control network (FPCN). These networks, which are attuned to handle internal and external information respectively, are often viewed as oppositional. However, our findings indicate they form an integrated system with continuous connectivity. We identified the posterior precuneus as a key convergence point, revealing a gradient of connectivity between the two networks. This gradient flattens during altered states of consciousness induced by psychedelics or sedatives, showing a loss of functional differentiation between the DMN and FPCN.

Article activity feed