Short RNA chaperones promote aggregation-resistant TDP-43 conformers to mitigate neurodegeneration

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aberrant aggregation of the prion-like, RNA-binding protein TDP-43 underlies several debilitating neurodegenerative proteinopathies, including amyotrophic lateral sclerosis (ALS). Here, we define how short, specific RNAs antagonize TDP-43 aggregation. Short, specific RNAs engage and stabilize the TDP-43 RNA-recognition motifs, which allosterically destabilizes a conserved helical region in the prion-like domain, thereby promoting aggregation-resistant conformers. By mining sequence space, we uncover short RNAs with enhanced activity against TDP-43 and diverse disease-linked variants. The solubilizing activity of enhanced short RNA chaperones corrects aberrant TDP-43 phenotypes in optogenetic models and ALS patient-derived neurons. Remarkably, an enhanced short RNA chaperone mitigates TDP-43 proteinopathy and neurodegeneration in mice. Our studies reveal mechanisms of short RNA chaperones and pave the way for the development of short RNA therapeutics for fatal TDP-43 proteinopathies.

Article activity feed