Asymmetric Interactions Shape Survival During Population Range Expansions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

An organism that is newly introduced into an existing population has a survival probability that is dependent on both the population density of its environment and the competition it experiences with the members of that population. Expanding populations naturally form regions of high and low density, and simultaneously experience ecological interactions both internally and at the boundary of their range. For this reason, systems of expanding populations are ideal for studying the combination of density and ecological effects. Conservation ecologists have been studying the ability of an invasive species to establish for some time, attributing success to both ecological and spatial factors. Similar behaviors have been observed in spatially structured cell populations, such as those found in cancerous tumors and bacterial biofilms. In these scenarios, novel organisms may be the introduction of a new mutation or bacterial species with some form of drug resistance, leading to the possibility of treatment failure. In order to gain insight into the relationship between population density and ecological interactions, we study an expanding population of interacting wild-type cells and mutant cells. We simulate these interactions in time and study the spatially dependent probability for a mutant to survive or to take over the front of the population wave (gene surfing). Additionally, we develop a mathematical model that describes this survival probability and find agreement when the payoff for the mutant is positive (corresponding to cooperation, exploitation, or commensalism). By knowing the types of interactions, our model provides insight into the spatial distribution of survival probability. Conversely, given a spatial distribution of survival probabilities, our model provides insight into the types of interactions that were involved to generate it.

Article activity feed