Discovery of an on-pathway protein folding intermediate illuminates the kinetic competition between folding and misfolding

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape. Previously, we reported extremely slow folding rates for the 539 aa β-helical passenger domain of pertactin (P.69T), including conditions that favor the formation of a kinetically trapped, off-pathway partially folded state (PFS). The existence of an on-pathway intermediate for P.69T folding was speculated but its characterization remained elusive. In this work, we exploited the extremely slow kinetics of PFS unfolding to develop a double-jump “denaturant challenge” assay. With this assay, we identified a transient unfolding intermediate, PFS*, that adopts a similar structure to PFS, including C-terminal folded structure and a disordered N-terminus, yet unfolds much more quickly than PFS. Additional experiments revealed that PFS* also functions as an on-pathway intermediate for P.69T folding. Collectively, these results support a two-step, C-to-N-terminal model for P.69T folding: folding initiates in the C-terminus with the rate-limiting formation of the transient on-pathway PFS* intermediate, which sits at the junction of the kinetic competition between folding and misfolding. Notably, processive folding from C-to-N-terminus also occurs during C-to-N-terminal translocation of P.69T across the bacterial outer membrane. These results illuminate the crucial role of kinetics when navigating a complex energy landscape for protein folding.

Article activity feed