Domain Structure and Interface Control of Mechanical Stiffness in Sustainable Cellulose Bio-nanocomposites

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Renewable and biodegradable plastics derived from soy protein isolate (SPI) offer a promising alternative to conventional petroleum-based plastics, particularly for film-grade bioplastics applications such as plastic bags. However, even with reinforcement from cellulose nanocrystals (CNCs), their mechanical properties including stiffness lag behind those of petroleum-based plastics. To identify pathways for improving CNC-reinforced SPI composites, we studied stiffening mechanisms by interpreting experimental data using homogenization models that accounted for CNC agglomeration and the formation of CNC/SPI interphases. To model effects of surface modification of CNCs with polydopamine (polyDOPA), we incorporated two key mechanisms: enhanced CNC dispersion and modified CNC-SPI interfacial interactions. Models accounted for interphases surrounding CNCs, arising from physicochemical interactions with the polyDOPA-modified CNC surfaces. Consistent wih experimental observations of polyDOPA modification enhancing mechanical properties through both increased spatial distribution of CNCs and matrix-filler interactions, results demonstrated that improved dispersion and interfacial bonding contribute to increased composite stiffness. Results highlight the potential of biodegradable CNC/SPI bio-nanocomposites as sustainable plastic alternatives, and suggest pathways for further enhancing their mechanical properties.

Article activity feed