Engineering prolyl hydroxylase-dependent proteolysis enables the orthogonal control of hypoxia responses in plants
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Vascular plants and metazoans use selective proteolysis of transcription factors to control the adaptive responses to hypoxia, although through distinct biochemical mechanisms. The reason for this divergence is puzzling, especially when considering that the molecular components necessary to establish both strategies are conserved across the two kingdoms. To explore an alternative evolutionary scenario where plants sense hypoxia as animals do, we engineered a three-components system aimed to target proteins for degradation in an oxygen dependent manner in Arabidopsis thaliana . Applying the synthetic biology framework, we produced a hypoxia-responsive switch independent of endogenous pathways. When applied to control transcription, the synthetic system partially restored hypoxia responsiveness in oxygen-insensitive mutants. Additionally, we demonstrated its potential to regulate growth under flood-induced hypoxia. Our work highlights the use of synthetic biology to reprogram signalling pathways in plants, providing insights into the evolution of oxygen sensing and ofering tools for crop improvement under stress conditions.