Mu-opioid receptor activation potentiates excitatory transmission at the habenulo-peduncular synapse
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The continuing opioid epidemic poses a huge burden on public health. Identifying the neurocircuitry involved and how opioids modulate their signaling is essential for developing new therapeutic strategies. The medial habenula (MHb) is a small epithalamic structure that projects predominantly to the interpeduncular nucleus (IPN) and represents a mu-opioid receptor (MOR) hotspot. This habenulo-peduncular (HP) circuit can regulate nicotine and opioid withdrawal; however, little is known about the physiological impact of MOR on its function. Using MOR-reporter mice, we observed that MORs are expressed in a subset of MHb and IPN cells. Patch-clamp recordings revealed that MOR activation inhibited action potential firing in MOR + MHb neurons and induced an inhibitory outward current in IPN neurons, consistent with canonical inhibitory effects of MOR. We next used optogenetics to stimulate MOR + MHb axons to investigate the effects of MOR activation on excitatory transmission at the HP synapse. In contrast to its inhibitory effects elsewhere, MOR activation significantly potentiated evoked glutamatergic transmission to IPN. The facilitatory effects of MOR activation on glutamate co-release was also observed from cholinergic-defined HP synapses. The potentiation of excitatory transmission mediated by MOR activation persisted in the presence of blockers of GABA receptors or voltage-gated sodium channels, suggesting a monosynaptic mechanism. Finally, disruption of MOR in the MHb abolished the faciliatory action of DAMGO, indicating that this non-canonical effect of MOR activation on excitatory neurotransmission at the HP synapse is dependent on pre-synaptic MOR expression. Our study demonstrates canonical inhibitory effects of MOR activation in somatodendritic compartments, but non-canonical faciliatory effects on evoked glutamate transmission at the HP synapse, establishing a new mode by which MOR can modulate neuronal function.