The effect of speech masking on the human subcortical response to continuous speech

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Auditory masking—the interference of the encoding and processing of an acoustic stimulus imposed by one or more competing stimuli—is nearly omnipresent in daily life, and presents a critical barrier to many listeners, including people with hearing loss, users of hearing aids and cochlear implants, and people with auditory processing disorders. The perceptual aspects of masking have been actively studied for several decades, and particular emphasis has been placed on masking of speech by other speech sounds. The neural effects of such masking, especially at the subcortical level, have been much less studied, in large part due to the technical limitations of making such measurements. Recent work has allowed estimation of the auditory brainstem response (ABR), whose characteristic waves are linked to specific subcortical areas, to naturalistic speech. In this study, we used those techniques to measure the encoding of speech stimuli that were masked by one or more simultaneous other speech stimuli. We presented listeners with simultaneous speech from one, two, three, or five simultaneous talkers, corresponding to a range of signal-to-noise ratios (SNR; Clean, 0, −3, and −6 dB), and derived the ABR to each talker in the mixture. Each talker in a mixture was treated in turn as a target sound masked by other talkers, making the response quicker to acquire. We found consistently across listeners that ABR wave V amplitudes decreased and latencies increased as the number of competing talkers increased.

Significance statement

Trying to listen to someone speak in a noisy setting is a common challenge for most people, due to auditory masking. Masking has been studied extensively at the behavioral level, and more recently in the cortex using EEG and other neurophysiological methods. Much less is known, however, about how masking affects speech encoding in the subcortical auditory system. Here we presented listeners with mixtures of simultaneous speech streams ranging from one to five talkers. We used recently developed tools for measuring subcortical speech encoding to determine how the encoding of each speech stream was impacted by the masker speech. We show that the subcortical response to masked speech becomes smaller and increasingly delayed as the masking becomes more severe.

Article activity feed