Shared and distinct adaptations to early-life exercise training based on inborn fitness

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Low cardiorespiratory fitness due to genetics increases the risk for cardiometabolic disease. Endurance exercise training promotes cardiorespiratory fitness and improves cardiometabolic risk factors, but with great heterogeneity. Here, we tested the hypothesis that the metabolic phenotype imparted by low parental (inborn) cardiorespiratory fitness would be overcome by early-life exercise training, and that exercise adaptations would be influenced in part by inborn fitness.

Methods

At 26 days of age, male and female rat low-capacity runners (LCR, n =20) and high-capacity runners (HCR, n =20) generated by artificial selection were assigned to either sedentary control (CTRL, n =10) or voluntary wheel running (VWR, n =10) for 6 weeks. Post-intervention, whole-body metabolic phenotyping was performed, and the respiratory function of isolated skeletal muscle and liver mitochondria assayed. Transcriptomics and proteomics were performed on skeletal muscle and liver tissue using RNA-sequencing and mass spectrometry, respectively.

Results

Daily VWR volume was 1.8-fold higher in HCR-VWR compared to LCR-VWR. In LCR, VWR reduced adiposity and enhanced glucose tolerance, coincident with elevated total energy expenditure. While intrinsic skeletal muscle mitochondrial respiratory function was unaffected by VWR, estimated skeletal muscle oxidative capacity increased in VWR groups owing to greater mitochondrial content. In the liver, both maximal oxidative capacity and ATP-linked respiration were higher in HCR-VWR than HCR-CTRL. Transcriptomic and proteomic profiling revealed extensive remodeling of skeletal muscle and liver tissue by VWR, elements of which were both shared and distinct based on inborn fitness.

Summary

Early-life exercise training partially overcomes the metabolic phenotype imparted by low inborn cardiorespiratory fitness. However, molecular adaptations to VWR are partly influenced by inborn fitness, which may have implications for personalized exercise medicine.

Article activity feed