Predicting coronary artery disease severity through genomic profiling and machine learning modelling: The GEnetic SYNTAX Score (GESS) trial
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cardiovascular diseases (CVDs) present multifactorial pathophysiology and produce immense health and economic burdens globally. The most common type, coronary artery disease (CAD), shows a complex etiology with multiple genetic variants to interplay with various clinical features and demographic traits affecting CAD risk and severity. The development and clinical validation of machine learning (ML) algorithms that integrate genetic biomarkers and clinical features can improve diagnostic accuracy for CAD avoiding, thereby, unnecessary invasive procedures. To this end, we present, here, the development of a data-driven ML approach able to predict the existence and severity of CAD based on the analysis of 228 single nucleotide polymorphisms (SNPs) and clinical and demographic data of 953 patients enrolled in the Genetic Syntax Score (GESS) trial ( NCT03150680 ). Two competing ensemble models (one with clinical predictors and another with clinical plus genetic predictors) were built and evaluated to infer their prediction capabilities. The ensemble model with both clinical and genetic predictors exhibited superior diagnostic performance compared to the competing model with only clinical predictors. The proposed ML framework identified a total of eight contributing SNPs as predictors for the existence of obstructive CAD and seven significant SNPs for the severity of CAD. Such algorithms positively contributes to global efforts aiming to predict the risk and severity of CAD in early stages, thus lowering the cost as well as achieving prognostic, diagnostic, and therapeutic benefits in healthcare and improving patient outcomes in a non-invasive way. Overall, the design and execution of this trial reinforces clinical decision-making and facilitate the harmonization in digitized healthcare within the concept of precision medicine.
Clinical Trial Registration
NCT03150680; https://clinicaltrials.gov/study/NCT03150680?cond=NCT03150680&rank=1