Mapping Cryptic Phosphorylation Sites in the Human Proteome

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Advances in computational and experimental methods have revealed the existence of transient, non-native protein folding intermediates that could play roles in disparate biological processes, from regulation of protein expression to disease-relevant misfolding mechanisms. Here, we tested the possibility that specific post-translational modifications may involve residues exposed during the folding process by assessing the solvent accessibility of 87,138 post-translationally modified amino acids in the human proteome. Unexpectedly, we found that one-third of phosphorylated proteins present at least one phosphosite completely buried within the protein’s inner core. Computational and experimental analyses suggest that these cryptic phosphosites may become exposed during the folding process, where their modification could destabilize native structures and trigger protein degradation. Phylogenetic investigation also reveals that cryptic phosphosites are more conserved than surface-exposed phosphorylated residues. Finally, cross-referencing with cancer mutation databases suggests that phosphomimetic mutations in cryptic phosphosites can increase tumor fitness by inactivating specific onco-suppressors. These findings define a novel role for co-translational phosphorylation in shaping protein folding and expression, laying the groundwork for exploring the implications of cryptic phosphorylation in health and disease.

Article activity feed