Facilitating Gene Editing in Human Lymphoma Cells Using Murine Ecotropic γ-Retroviruses

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Genetic modifications using CRISPR-Cas9 have revolutionized cancer research and other pre-clinical studies. Exceptionally, these efficient tools are inadequate in a few disease models and cell lines due to the aberrant differentiation states and the accumulation of excessive somatic mutations that compromise the robustness of viral gene delivery and stable transduction. A couple of B lymphoma cell lines fall into this category where lentiviral transfection becomes inefficient and exhibits variable efficiency. Additionally, lentiviral delivery requires high biosafety levels. To address this challenge, we have developed a two-step strategy that supports CRISPR-Cas9 through lentivirus and murine ecotropic γ-retrovirus. By engineering B lymphoma cell lines to express Cas9 and mCat-1, a specific receptor for ecotropic retroviruses, we enable efficient and safe gene editing through ecotropic γ-retrovirus. We demonstrate the efficacy of this method by generating IgM-deficient B lymphoma cell lines. This innovative approach simplifies protocols, enhances accessibility, and paves the way for standardized gene manipulation of B cell lymphoma models for molecular cell biology research.

Article activity feed