PHLPP2 is a pseudophosphatase that lost activity in the metazoan ancestor

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The phosphoinositide 3-kinase (PI3K) pathway is a major regulator of cell and organismal growth. Consequently, hyperactivation of PI3K and its downstream effector kinase, Akt, is observed in many human cancers. PH domain leucine-rich repeat-containing protein phosphatases (PHLPP), two paralogous members of the metal-dependent protein phosphatase family, have been reported as negative regulators of Akt signaling and, therefore, tumor suppressors. However, the stoichiometry and identity of the bound metal ion(s), mechanism of action, and enzymatic specificity of these proteins are not known. Seeking to fill these gaps in our understanding of PHLPP biology, we unexpectedly discovered that PHLPP2 has no catalytic activity against the regulatory phosphorylation sites of Akt, nor the generic substrate para -nitrophenylphosphate. Instead, we found that PHLPP2 is a pseudophosphatase with a single zinc ion bound in its catalytic center. Furthermore, we found that current cancer genomics data do not support the proposed role of PHLPP1 or PHLPP2 as tumor suppressors. Phylogenetic analyses revealed an ancestral phosphatase that arose more than 1000 Mya, but that lost activity at the base of the metazoan lineage. In summary, our results provide a molecular explanation for the inconclusive results that have hampered research on PHLPP and argue for a new focus on non-catalytic roles of PHLPP1 and PHLPP2.

Significance Statement

PHLPP1 and PHLPP2 have previously been reported as protein phosphatases that specifically inactivate Akt, a pro-growth and survival kinase hyperactivated in many human cancers. Unexpectedly, we found that purified PHLPP2 has no detectable enzymatic activity in vitro, an observation which can be rationalized by its unusual active site, which has diverged significantly from that of canonical metal-dependent phosphatases. Furthermore, we show that cancer genomics do not support a role for either PHLPP1 or PHLPP2 in cancer. Our findings argue for the exploration of alternative hypotheses regarding the role of PHLPP in Akt signaling and cancer, with a focus on its non-catalytic functions.

Article activity feed