MEG signals reveal arm posture coding and intrinsic movement plans in parietofrontal cortex
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Movement planning processes must account for body posture to accurately convert sensory signals into movement plans. While movement plans can be computed relative to the world (extrinsic), intrinsic muscle commands tuned for current limb posture are ultimately needed to execute spatially accurate movements. The whole-brain topology and dynamics of this process are largely unknown. Here, we use high spatiotemporal resolution magnetoencephalography (MEG) in humans combined with a Pro-/Anti-wrist pointing task with 2 opposing forearm postures to investigate this question. First, we computed cortical source activity in 16 previously identified bilateral cortical areas (Alikhanian, et al., Frontiers in Neuroscience 2013). We then contrasted oscillatory activity related to opposing wrist postures to find posture coding and test when and where extrinsic and intrinsic motor codes occurred. We found a distinct pair of overlapping networks coding for posture (predominantly in γ band) vs. posture-specific movement plans (α and β). Some areas (e.g., pIPS) only showed extrinsic motor coding, and others (e.g., AG) only showed intrinsic coding, but the majority showed both types of codes. In the latter case, intrinsic codes appeared slightly before extrinsic codes and persisted in parallel across different cortical areas. These findings are consistent with two cortical networks for 1) direct feed-forward sensorimotor transformations to intrinsic muscle coordinates (for rapid control) and 2) computations of extrinsic spatial coordinates, possibly for use in higher-level aspects of visually-guided action, such as spatial updating and internal performance monitoring.
Significance statement / author summary
It is thought that the brain incorporates posture into extrinsic spatial codes to compute intrinsic (muscle-centered) motor commands, but the whole-brain temporal dynamics of this process is unknown. Here we employed human magneto-encephalography (MEG) to track this process across 16 bilateral cortical sites. We identified two, largely overlapping subnetworks for posture-dependent intrinsic codes, and extrinsic spatial coding. Surprisingly, the direct transformation from sensorimotor coordinates to intrinsic commands preceded the appearance of extrinsic codes, suggesting that extrinsic motor codes are derived from intrinsic codes for higher-level cognitive purposes.