From Micro to Macro: Avian Chromosome Evolution is Dominated by Natural Selection
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Birds display striking variation in chromosome number, defying the traditional view of highly conserved avian karyotypes. However, the evolutionary drivers of this variability remain unclear. To address this, we fit probabilistic models of chromosome number evolution across birds, enabling us to estimate rates of evolution for total chromosome number and the number of microchromosomes and macrochromosomes while simultaneously accounting for the impact of other evolving traits. Our analyses revealed higher rates of chromosome fusion than fission across all bird lineages. Notably, much of this signal was driven by Passeriformes, where migratory species showed a particularly strong bias towards fusions compared to sedentary counterparts. Furthermore, a robust correlation between the rearrangement rates of microchromosomes and macrochromosomes suggests that genome-wide processes drive rates of structural evolution. Additionally, we found that lineages with larger population sizes exhibited higher rates of both fusion and fission, indicating that positive selection plays a dominant role in driving divergence in chromosome number. Our findings illuminate the evolutionary dynamics of avian karyotypes and highlight that, while the fitness effects of random structural mutations are often deleterious, beneficial mutations may dominate karyotype divergence in some clades.