Single-cell spatial atlas of high-grade serous ovarian cancer unveils MHC class II as a key driver of spatial tumor ecosystems and clinical outcomes
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The tumor microenvironment (TME) is a complex network of interactions between malignant and host cells, yet its orchestration in advanced high-grade serous ovarian carcinoma (HGSC) remains poorly understood. We present a comprehensive single-cell spatial atlas of 280 metastatic HGSCs, integrating high-dimensional imaging, genomics, and transcriptomics. Using 929 single-cell maps, we identify distinct spatial domains associated with phenotypically heterogeneous cellular compositions, and demonstrate that immune cell co-infiltration at the tumor-stroma interface significantly influences clinical outcomes. To uncover the key drivers of the tumor ecosystem, we developed CEFIIRA (Cell Feature Importance Identification by RAndom forest), which identified tumor cell-intrinsic MHC-II expression as a critical predictor of prolonged survival, independent of clinicomolecular profiles. Validation with external datasets confirmed that MHC-II-expressing cancer cells drive immune infiltration and orchestrate spatial tumor-immune interactions. Our atlas offers novel insights into immune surveillance mechanisms across HGSC clinicomolecular groups, paving the way for improved therapeutic strategies and patient stratification.