Structural Basis for Catalysis and Substrate Specificity of a LarA Racemase with a Broad Substrate Spectrum

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The LarA family consists of diverse racemases/epimerases that interconvert the diastereomers of a variety of α-hydroxyacids by using a nickel-pincer nucleotide (NPN) cofactor. The hidden redox reaction catalyzed by the NPN cofactor makes LarA enzymes attractive engineering targets for applications. However, how a LarA enzyme binds its natural substrate and recognizes different α-hydroxyacids has not been elucidated. Here, we report three high-resolution structures of the enzyme-substrate complexes of a broad-spectrum LarA enzyme from Isosphaera pallida (LarA Ip ). The substrate binding mode reveals an optimal orientation and distance between the hydride donor and acceptor, strongly supporting the proposed proton-coupled hydride transfer mechanism. The experimentally solved structures, together with the structural models of other LarA enzymes, allow us to identify the residues/structural elements critically involved in the interactions with different α-hydroxyacid substrates. Collectively, this work provides a critical structural basis for catalysis and substrate recognition of the diverse enzymes in the LarA family, thus building a foundation for enzyme engineering.

Article activity feed